The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
solve.ab
has been renamed to
solve_ab
.all.vars1
has been renamed to
all_vars1
.predict.kmeans.fd
has been renamed to
predict_kmeans.fd
.kmeans.assig.groups
has been renamed to
kmeans_assig_groups
.kmeans.centers.update
has been renamed to
kmeans_centers_update
.kmeans.assig.groups
has been
renamed to kmeans_assig_groups
.kmeans.assig.groups
has been
renamed to kmeans_assig_groups
.image.scale
has been renamed to
image_scale
.predict.gls
has been renamed to
predict_gls
.predict.mregre
has been renamed to
predict_._mregre
.predict.gls
has been renamed to
predict_gls
.quantile_outliers.pond
has
been renamed to quantile_outliers_pond
.quantile_outliers.trim
has
been renamed to quantile_outliers_trim
.plot.lfdata
function is exported, no longer
internalfda.usc 2.1.0 is a major release with several new feature and fixed bugs.
fdata2basis()
always return centred fdataobj and
mean. The mean is computed using the basis.
New funtions: fEqMoments.test()
,
fmean.test.fdata()
, cov.test.fdata()
for
checking the equality of means and/or covariance between two populations
under gaussianity.
New funtions: fEqDistrib.test()
,
XYRP.test()
, MMD.test()
,
MMDA.test()
, fEqDistrib.test()
for checking
the equality of distributions between two functional
populations.
The wavelength units in the Tecator dataset are labeled as nm in dataset description, but they are nm in the original description. (bug detected by vnmabus)
summary.fdata.comp()
data.matrix
(instead of as.matrix) to
convert data.table in a matrix class object, option recommended when
data.frame contains characters.classif.cv.glmnet()
and classif.gbm()
,
functional basis classsification using cv.glmnet()
, require
glmnet package, and gbm()
, require gbm package.h.default()
, new argument ‘Ker’mfdata()
, new class object for multivariate functional
datafregre.basis.cv()
, fregre.basis.cv()
and
fregre.pc()
return df.residual objectS.LPR()
and S.LLR()
classif.gsam.vs
, new function for variable selection in
additive classifierfdata2basis()
is used in fregre.lm()
and
predict.fregre.lm()
fdata2basis()
fdata.bootstrap()
and fregre.bootstrap()
functions addapted to parallel backend.kmeans.fd()
function.predict.fregre.glm()
,
predict.fregre.lm()
and predict.gsam()
, now
works with type=“effects”.plot.bifd()
function.plot.ldata()
draws each curve according to the factor
indicated in the argument “var.name”.ldata()
, “na.rm = T” is removed in the
sweep function.wmestadis()
used in
fanova.onefactor()
, now it replicates the statistic defined
by Cuevas, 2004.summary.fdata.comp()
function.dev.new()
in code of
summary.fdata.comp()
function.Modification in fdata()
function to avoid class()==
and class()!= instead use is()
,
kmeans.fd()
function:
predict.kmeans.fd
.Bug corrected in internal function pred2glm2boost()
,
it is used for predictions of classiff.DD()
outputs
New functions: Ops.ldata()
,
Math.ldata()
, Summary.ldata()
,
mean.ldata()
and mean.fdata()
(deprecated
ldata.mean()
, mfdata.mean()
)
Modifications in ldata.cen()
A bug in S.LPR()
has been fixed.
A bug in internal function wmestadis()
used in
fanova.onefactor()
has been fixed.
Version 2.0.0 is a major release with several new features, including:
inprod.fdata()
and metric.lp
funcitons
addapted to parallel backend.
zzz.R file includes .onAttach()
function (welcome
package message)
ops.fda.usc.R file includes ops.fda.usc()
function
that control general parameters of packages such as ncores
argument.
par.fda.usc.R file is deleted: par.fda.usc is now an internal
object created and modified by ops.fda.usc()
New function metric.DTW()
computes distances between
functional data using dynamic time warping (DTW)
metric.WDTW()
and metric.TWED()
are extended
version (not parallelized yet, pending to completed the Rd
document)
New functions S.LPR()
and S.LCR()
for
computing smoothing matrix S by nonparametric method.
The functions anova.hetero(), anova.onefactor(), anova.RPm(),
influence.fdata(), influence.quan(), min.basis(), min.np() and
unlist.fdata() are renamed fanova.hetero(), fanova.onefactor(),
fanova.RPm(), influence.fregre.fd()
, influence_quan(),
optim.basis()
, optim.np()
and
unlist_fdata()
optim.np() (deprecated min.np()) allows Local polynomial regression with correlated errors using the new parameter (correl=TRUE)
Kernel.correlated()
new functions
New class: “ldata”:
ldata()
class definition.
Redefined metric.ldata()
, it computes distance for
ldata object: list with m functional data mfdata()
and
univariate data included in a data frame called “df”
New function metric.mfdata()
: compute distance for
mfdata class object: list with m functional data
plot.ldata()
: plots for ldata object, it allows
drawing using a color bar.
plot.mfdata()
: plot formfdata object (internal
function, pending to completed the Rd document)
depth.modep()
, depth.mode() call
metric.lp()
and metric.ldata()
propperly
New functions: subset.ldata()
,
is.lfdata()
, [.lfdata()
, [.ldata
,
is.ldata()
, names.ldata()
and
c.ldata()
classic.tree()
is replaced by the
classic.rpart()
(which requires the rpart library to be
installed). The internal function classif.tree2boost()
and
the dependency of the rpart package are also removed
New functions and utilities in accuracy.r file.
New functions related with Machine Learning procedures (rdepend on packages not included in “fda.usc”):
classif.svm()
and classif.naiveBayes()
(e1071 pkg), classif.ksvm()
(personalized pkg),classif.rpart()
(rpart pkg),
classif.nnet()
(nnet pkg), classif.multinom()
(nnet pkg),classif.randomForest()
(randomForest)clasiff.univariante()
is used in classif.DD and allow
multiclass labelsclassif.kfold()
selects the parameters using k-fold
cross-validationMinor changes in classif.gkam()
and
fregre.gkam()
Settings in fregre.np()
, fregre.np.cv()
with type.S = S.KNN
New script file: FDA_REviewClasif_V2 classification example
Bug corrected in h.default()
(specially using
k-nearest neighbors smoothing, type.S=“S.KNN”)
“type.CV” and “par.CV()” arguments are removed in
classif.np()
, classif.kernel()
and
classif.knn()
dcor.xy.r/.Rd includes Rdnames
fdata2model.R shortcut to use in classif and fregre method
This version was released in Jan. 2019 to accompany Manuel Oviedo de la Fuente PhD Thesis, see Minerva (University of Santiago de Compostela) repository.
New function implemented: fregre.gsam.vs() accompany paper:
Febrero-Bande, M., Gonz'{a}lez-Manteiga, W. and Oviedo de la Fuente, M.
Variable selection in functional additive regression models,
(2018).
Computational Statistics, 1-19. DOI: 10.1007/s00180-018-0844-5
The current function fregre.basis.cv()
returns an
object called fregre.basis (same output as if the
fregre.basis()
function had been used) that uses the
selected parameters according to the indicated criteria (see example
below). The previous function version (up to version 1.5.0) has been
renamed in the function “fregre.basis.cv.old”. It is marked as
deprecated in the current version and will be deleted in the next
version of the package, thanks to Beatriz Bueno.
New functions: plot.fregre.lm and summary.fregre.lm() solve
errors in the summary of the in fregre.lm()
function,
thanks to Prof. Andros Kourtellos.
A bug in fregre.pc()
has been fixed (thanks to
Prof. Eduardo Garcia-Portugues).
This was published in December 2017 to accompany the document:
Ordonez, C., Oviedo de la Fuente, M., Roca-Pardinas, J., Rodriguez-Perez, J. R. (2017). Determining optimum wavelengths for leaf water content estimation from reflectance: A distance correlation approach. , (2018) 173,41-50 DOI: 10.1016/j.chemolab.2017.12.001.
New functions implemented: LMDC.select()
and
LMDC.regression()
.
Oviedo de la Fuente M, Febrero-Bande M, Muñoz MP, Domínguez À (2018) Predicting seasonal influenza transmission using functional regression models with temporal dependence. PLoS ONE 13(4): e0194250. DOI: 10.1371/journal.pone.0194250
This package version also companion for the paper:
“Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes” Cuesta-Albertos et al., 2017). The package implements goodness-of-fit tests for the functional linear model with scalar response.
A bug in functional derivative by raw derivation (function
fdata.deriv()
with method=“diff”) has been fixed, thanks to
Marcos Matabuena.
A bug in classif.knn()
and predict.classif() has
been fixed, thanks to Ricardo Recarey.
A bug in CV.S()
function has been fixed, thanks to
Miquel Carbajo.
A bug in anova.hetero()
has been fixed, thanks to
Beatriz Bueno.
Beta version functions to Fit Functional Linear Model Using
Generalized Least Squares: fregre.gls()
,
fregre.igls()
, GCCV.S()
,
predict.fregre.gls()
and
predict.fregre.igls()
. Internal function “auxiliar”,
“corSigma()”, “corStruct()”.
The functionality of the functions “+.fdata()”, “-.fdata()”, “*.fdata()” an “/.fdata” has been improved.
S3 functions for fdata class calculations:
is.na.fdata()
and anyNA.fdata
. Function
“count.na.fdata()” returns a vector with the number of “NA” of each
curve.
Internal function “count.na” is deprecated.
fdata function converts “xtab” and “ftable” class object into “fdata” class object.
classif.DD()
function for DDk
classifier.length.fdata()
,
NROW.fdata()
, NCOL.fdata()
,
gridfdata()
and rcombfdata()
.
depth.KFSD()
function implements a depth measure based on
Kernelized Functional Spatial Depth.depth.FSD()
function implements a depth measure based on
Functional Spatial Depth.fregre.pc()
function has been fixed.depth.RPD()
function has been fixed.fregre.basis.cv()
,
fregre.pc.cv()
and fregre.pls.cv()
,
fregre.basis()
, fregre.pc()
and
fregre.pls()
functions when system is computationally
singular.classif.DD()
function, the polynomial classifier
(“DD1”, “DD2” and “DD3”) uses the original procedure proposed by Li et
al. (2012), rotating the DD-plot (to exchange abscise and ordinate). The
procedure extend to multi-class problems by incorporating the method of
majority voting in the case of polynomial classifier and the method One
vs the Rest in the logistic case (“glm” and “gam”).fregre.gkam()
function only considers functional
covariates (not implemented for non-functional covariates).depth.FM()
function it has been renamed the
argument “dfunc” by “dfunc2”. subset.fdata()
is a wrapper
function of subset function.dcor.xy
, dcor.test()
,
bcdcor.dist()
and dcor.dist()
(wrapper
function of energy package) are added. fregre.gsam()
function can be used without smoothed vairables.summary.fregre.gkam()
has
been fixed.rproc2fdata()
has been
fixed. The default values depth.RPp, depth.RP and
rproc2fdata()
have been modified.classif.DD()
function uses the same bandwidth “h” for
k groups in modal depth and same projections “proj” for k groups in RP
depth.predict.fregre.gsam()
when PLS are previously
estimated using norm=TRUE has been fixed.New functions:
classif.DD()
, fits Nonparametric Classification
Procedure Based on DD-plot (depth-versus-depth plot) for G groups.depth.FMp()
, depth.modep
and
depth.RPp()
functions provide the depth measure for a list
of p–functional data objects.metric.ldata()
, computes distance for a list of
p–functional data objects.metric.hausdorff()
, computes hausdorff distance.New functions:
fregre.basis.fr()
fits functional response model.metric.kl()
computes Kullback–Leibler distance.anova.onefactor()
: tests one–way anova model for
functional data.split.fdata()
, unlist.fdata()
: A wrapper
functions of the split and unlist function for functional data.func.mean.formula()
computes the mean curve for the
each level of grouping variable.New dataset: Mithochondiral calcium overload (MCO) data set.
New utilities:
fdata()
converts arrays of 3 dimension in a functional
data of 2 dimension plot.fdata()
allows functional data of
2 dimension.fdata2pc()
, fdata2pls()
,
fregre.pc()
, fregre.pc.cv()
,
fregre.pls()
, fregre.pls.cv()
. These latter
functions include penalty arguments.outlier.ltr()
function has been fixed in the
case of the rownames (of fdata) can not be converted to numeric
values.fregre.lm()
function has been fixed in the
case of one of the covariates is a factor and penalization argument is
required (rn or lambda greater than zero).fregre.lm()
penalizes the
derivative of second order of the functional data.predict.fregre.fd()
and
predict.fregre.lm()
produce confidence or prediction
intervals at the specified level mimicking
predict.lm()
.rproc2fdata()
.rproc2fdata()
allows vector and
also fdata class object.fregre.pls()
function has been fixed in the
case of the FPLS basis are created with the argument norm is TRUE (the
curves are centred and scaled).outliers.depth.trim()
function has been fixed
in the case of the procedure requires more than one iteration step.classif.depth()
that fits a nonparametric classification procedure based on maximum
depth measure.create.pc.basis()
and create.pls.basis()
by
the new arguments “lambda” and “P”.predict.fregre.fd()
function has been fixed
(in the case of the “object” is fitted using funtional partial least
square basis).CV.S()
function when “y” argument is a fdata
object has been fixed.metric.lp()
function NA values are returned, if the
fdata has NA’s values.metric.lp()
function supremum distance is computed,
if “lp” argument is 0.New functions:
New depth functions and its corresponding shortcut functions (see
help(Descriptive)
form more details):
depth.SD()
provides the simplicial depth measure for
bivariate data.
depth.PD()
provides the depth measure using random
projections for multivariate data.
depth.MhD()
provides the Mahalanobis depth measure
for multivariate data.
depth.HD()
provides the half-space depth measure for
multivariate data.
It introduces a new functions for functional PC and PLS regression:
fregre.ppc, fregre.ppls, fregre.ppc.cv, fregre.ppls.cv, and the auxiliary functions: fdata2ppc, fdata2ppls, P.penalty.
The function rber.gold() has been renamed by rwild()
function.
ow, rwild()
contructs the Wild bootstrap
residuals.
order.fdata()
is a wrapper function of order
function.
New arguments and options:
New arguments “wild” and “type.wild” in
fregre.bootstrap()
. In fregre.glm()
,
fregre.gsam()
, classif.glm2boost(), classif.gsam2boost()
the “fdataobj” argument allows a multivariate data or functional data. *
fregre.lm()
allows penalization by “rn” parameter (ridge
regression). * fregre.pc()
and fregre.basis() allow
weighted least squares by “weights” argument.
fdata.bootstrap()
has been
fixed.predict.classif()
function ussing a fitted
object by classif.knn()
has been fixed.create.pc.basis()
function when “l” argument
has length 1 has been fixed.fregre.lm()
, fregre.glm()
and
fregre.gsam()
.Release 1.0.0 was released in Oct. 2012 as the working version to accompany ’Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). ’Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28., URL https://www.jstatsoft.org/article/view/v051i04
New functions added:
depth.RT()
implements a random Tukey depth (RT) and its
corresponding some shortcut functions. metric.dist()
methods as wrappers for dist(),depth.FM()
, depth.RP()
,
depth.mode()
and fdata()
.The functions: fregre.glm()
,
fregre.gsam()
, fregre.gkam()
,
classif.np()
, classif.glm()
,
classi.glm()
allow functional and multivariate
analysis.
Release 0.9.8.1 introduces new functions flm.Ftest() and dfv.test(). The first performs a functional F-test and the second implements the test of Delsol, Ferraty and Vieu (2010).
Function flm.test()
now has a better computational
performance and function Aijr() has been replaced by
Adot()
.
New argument “lambda” in fdata2fd()
function.
New argument “rn” in create.pc.basis()
function.
fregre.kgam() has been renamed to fregre.gkam()
.
Release 0.9.8 introduces a new function flm.test()
that
allows to test for the Functional Linear Model with scalar response for
a given dataset. Is based on the new functions
PCvM.statistic()
, Aijr() and rber.gold().
A bug in fregre.kgam() has been fixed.
New functions:
fregre.kgam(), classif.kgam(), dev.S(),
predict.fregre.kgam(), print.fregre.kgam(),
summary.fregre.kgam(), fregre.gsam()
,
classif.np()
, classif.kgam(),
classif.gsam()
.
New argument “par.S” in: fregre.np()
,
fregre.np.cv()
, fregre.plm()
,
S.NW()
, S.KNN()
,
S.LLR()
.
New attributes for: metric.lp()
,
semimetric.basis()
and
semimetric.NPFDA()
Release 0.9.6 renames the functions:
pc.fdata()–>fdata2pc()
pls.fdata()–>fdata2pls()
pc.cor()–>summary.fdata.comp()
pc.fdata()–>summary.fdata.comp()
It added create.pls.basis()
,
Math.fdata()
, Ops.fdata()
,
Summary.fdata()
and dis.cos.cor()
function.
New argument par.S in: fregre.np()
,
fregre.np.cv()
, fregre.plm()
, New argument cv
in: S.NW()
, S.KNN()
,
S.LLR()
In metric.lp()
the argument p now is called
lp.
Release 0.9.5 improves fdata.bootstrap()
function
(better computational efficiency). It introduces a new functions: for
Partial Linear Square (pls.fdata(), fregre.pls()
and
fregre.pls.cv()
) and Simpson integration (int.simpson() and
int.simpson2()). It modifies the functions metric.lp()
,
inprod.fdata()
, summary.fregre.fd()
and
predict.fregre.fd()
.
Release 0.9.4 added 3 script files: Outliers_fdata.R,
flm_beta_estimation_brownian_data.R and Classif_phoneme.R. It has
introduced the functions fregre.glm()
and
predict.fregre.glm()
which allow fit and predict
respectively Functional Generalized Linear Models. It has introduced the
functions create.pc.basis and create.fdata.basis()
which
allow to create basis objects for functional data of class “fdata”.
Release 0.9 introduces a new function h.default()
that
simplifies the calculation of the bandwidth parameter “h” in the
functions: fregre.np()
, fregre.np.cv()
and
fregre.plm()
.
In most of the functions has added a stop control when the dataset has
missing data (NA’s). It adds the attribute “call” to the distance matrix
calculated in metric.lp()
, semimetric.basis()
and semimetric.NPFDA()
functions.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.