The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
set.seed(1)
n <- 300
p_true <- 4
p <- 40
x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p))
theta_0 <- rbind(
runif(p_true, 1, 4),
runif(p_true, -5, 5),
runif(p_true, 1, 4),
runif(p_true, -3, 3)
)
theta_0 <- cbind(theta_0, matrix(0, ncol = p - p_true, nrow = 4))
y <- c(
x[1:(n * 0.25), ] %*% theta_0[1, ] + rnorm(n * 0.25),
x[(n * 0.25 + 1):(n * 0.5), ] %*% theta_0[2, ] + rnorm(n * 0.25),
x[(n * 0.5 + 1):(n * 0.75), ] %*% theta_0[3, ] + rnorm(n * 0.25),
x[(n * 0.75 + 1):n, ] %*% theta_0[4, ] + rnorm(n * 0.25)
)
small_lasso <- cbind.data.frame(y, x)
result <- fastcpd.lasso(small_lasso, segment_count = 2, r.progress = FALSE)
summary(result)
#>
#> Call:
#> fastcpd.lasso(data = small_lasso, segment_count = 2, r.progress = FALSE)
#>
#> Change points:
#> 73 151
#>
#> Cost values:
#> 403.3531 330.8874 1131.242
#>
#> Parameters:
#> 40 x 3 sparse Matrix of class "dgCMatrix"
#> segment 1 segment 2 segment 3
#> [1,] 0.2725645 3.2847730 0.3945321
#> [2,] 1.0710180 -1.0318006 0.2333177
#> [3,] 2.0691658 0.8655912 .
#> [4,] 0.2865536 -2.7810274 1.4952166
#> [5,] . . .
#> [6,] . . .
#> [7,] . . .
#> [8,] . . .
#> [9,] . . .
#> [10,] . . .
#> [11,] . . .
#> [12,] . . .
#> [13,] . . .
#> [14,] . . .
#> [15,] . . .
#> [16,] . . .
#> [17,] . . .
#> [18,] . . .
#> [19,] . . .
#> [20,] . . .
#> [21,] . . .
#> [22,] . . .
#> [23,] . . .
#> [24,] . . .
#> [25,] . . .
#> [26,] . . .
#> [27,] . . .
#> [28,] . . .
#> [29,] . . .
#> [30,] . . .
#> [31,] . . .
#> [32,] . . .
#> [33,] . . .
#> [34,] . . .
#> [35,] . . .
#> [36,] . . .
#> [37,] . . .
#> [38,] . . .
#> [39,] . . .
#> [40,] . . .
result_vanilla_percentage <- fastcpd.lasso(
small_lasso, segment_count = 2, vanilla_percentage = 0.5,
r.progress = FALSE
)
summary(result_vanilla_percentage)
#>
#> Call:
#> fastcpd.lasso(data = small_lasso, segment_count = 2, vanilla_percentage = 0.5,
#> r.progress = FALSE)
#>
#> Change points:
#> 74 150
#>
#> Cost values:
#> 404.3949 296.7204 1162.25
#>
#> Parameters:
#> 40 x 3 sparse Matrix of class "dgCMatrix"
#> segment 1 segment 2 segment 3
#> [1,] 0.2835972 3.208983 0.4299211
#> [2,] 1.0913097 -1.306468 0.3019345
#> [3,] 2.0550480 0.697885 .
#> [4,] 0.2928737 -2.771848 1.4996787
#> [5,] . . .
#> [6,] . . .
#> [7,] . . .
#> [8,] . . .
#> [9,] . . .
#> [10,] . . .
#> [11,] . . .
#> [12,] . . .
#> [13,] . . .
#> [14,] . . .
#> [15,] . . .
#> [16,] . . .
#> [17,] . . .
#> [18,] . . .
#> [19,] . . .
#> [20,] . . .
#> [21,] . . .
#> [22,] . . .
#> [23,] . . .
#> [24,] . . .
#> [25,] . . .
#> [26,] . . .
#> [27,] . . .
#> [28,] . . .
#> [29,] . . .
#> [30,] . . .
#> [31,] . . .
#> [32,] . . .
#> [33,] . . .
#> [34,] . . .
#> [35,] . . .
#> [36,] . . .
#> [37,] . . .
#> [38,] . . .
#> [39,] . . .
#> [40,] . . .
result_multiple_epochs <- fastcpd.lasso(
small_lasso,
segment_count = 2,
multiple_epochs = function(segment_length) {
if (segment_length < 25) 1 else 0
},
r.progress = FALSE
)
summary(result_multiple_epochs)
#>
#> Call:
#> fastcpd.lasso(data = small_lasso, segment_count = 2, multiple_epochs = function(segment_length) {
#> if (segment_length < 25)
#> 1
#> else 0
#> }, r.progress = FALSE)
#>
#> Change points:
#> 74 151 227
#>
#> Cost values:
#> 404.3949 323.0533 394.7117 245.3975
#>
#> Parameters:
#> 40 x 4 sparse Matrix of class "dgCMatrix"
#> segment 1 segment 2 segment 3 segment 4
#> [1,] 0.2835972 3.269615 0.9960117 .
#> [2,] 1.0913097 -1.089741 1.6936173 .
#> [3,] 2.0550480 0.896723 1.5956191 .
#> [4,] 0.2928737 -2.769824 2.1702226 0.1701821
#> [5,] . . . .
#> [6,] . . . .
#> [7,] . . . .
#> [8,] . . . .
#> [9,] . . . .
#> [10,] . . . .
#> [11,] . . . .
#> [12,] . . . .
#> [13,] . . . .
#> [14,] . . . .
#> [15,] . . . .
#> [16,] . . . .
#> [17,] . . . .
#> [18,] . . . .
#> [19,] . . . .
#> [20,] . . . .
#> [21,] . . . .
#> [22,] . . . .
#> [23,] . . . .
#> [24,] . . . .
#> [25,] . . . .
#> [26,] . . . .
#> [27,] . . . .
#> [28,] . . . .
#> [29,] . . . .
#> [30,] . . . .
#> [31,] . . . .
#> [32,] . . . .
#> [33,] . . . .
#> [34,] . . . .
#> [35,] . . . .
#> [36,] . . . .
#> [37,] . . . .
#> [38,] . . . .
#> [39,] . . . .
#> [40,] . . . .
This document is generated by the following code:
R -e 'knitr::knit("vignettes/examples-advanced.Rmd.original", output = "vignettes/examples-advanced.Rmd")'
knitr::opts_chunk$set(
collapse = TRUE, comment = "#>", eval = TRUE, warning = FALSE
)
library(fastcpd)
set.seed(1)
n <- 300
p_true <- 4
p <- 40
x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p))
theta_0 <- rbind(
runif(p_true, 1, 4),
runif(p_true, -5, 5),
runif(p_true, 1, 4),
runif(p_true, -3, 3)
)
theta_0 <- cbind(theta_0, matrix(0, ncol = p - p_true, nrow = 4))
y <- c(
x[1:(n * 0.25), ] %*% theta_0[1, ] + rnorm(n * 0.25),
x[(n * 0.25 + 1):(n * 0.5), ] %*% theta_0[2, ] + rnorm(n * 0.25),
x[(n * 0.5 + 1):(n * 0.75), ] %*% theta_0[3, ] + rnorm(n * 0.25),
x[(n * 0.75 + 1):n, ] %*% theta_0[4, ] + rnorm(n * 0.25)
)
small_lasso <- cbind.data.frame(y, x)
result <- fastcpd.lasso(small_lasso, segment_count = 2, r.progress = FALSE)
summary(result)
set.seed(1)
n <- 300
p_true <- 4
p <- 40
x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p))
theta_0 <- rbind(
runif(p_true, 1, 4),
runif(p_true, -5, 5),
runif(p_true, 1, 4),
runif(p_true, -3, 3)
)
theta_0 <- cbind(theta_0, matrix(0, ncol = p - p_true, nrow = 4))
y <- c(
x[1:(n * 0.25), ] %*% theta_0[1, ] + rnorm(n * 0.25),
x[(n * 0.25 + 1):(n * 0.5), ] %*% theta_0[2, ] + rnorm(n * 0.25),
x[(n * 0.5 + 1):(n * 0.75), ] %*% theta_0[3, ] + rnorm(n * 0.25),
x[(n * 0.75 + 1):n, ] %*% theta_0[4, ] + rnorm(n * 0.25)
)
small_lasso <- cbind.data.frame(y, x)
result_vanilla_percentage <- fastcpd.lasso(
small_lasso, segment_count = 2, vanilla_percentage = 0.5,
r.progress = FALSE
)
summary(result_vanilla_percentage)
set.seed(1)
n <- 300
p_true <- 4
p <- 40
x <- mvtnorm::rmvnorm(n, rep(0, p), diag(p))
theta_0 <- rbind(
runif(p_true, 1, 4),
runif(p_true, -5, 5),
runif(p_true, 1, 4),
runif(p_true, -3, 3)
)
theta_0 <- cbind(theta_0, matrix(0, ncol = p - p_true, nrow = 4))
y <- c(
x[1:(n * 0.25), ] %*% theta_0[1, ] + rnorm(n * 0.25),
x[(n * 0.25 + 1):(n * 0.5), ] %*% theta_0[2, ] + rnorm(n * 0.25),
x[(n * 0.5 + 1):(n * 0.75), ] %*% theta_0[3, ] + rnorm(n * 0.25),
x[(n * 0.75 + 1):n, ] %*% theta_0[4, ] + rnorm(n * 0.25)
)
small_lasso <- cbind.data.frame(y, x)
result_multiple_epochs <- fastcpd.lasso(
small_lasso,
segment_count = 2,
multiple_epochs = function(segment_length) {
if (segment_length < 25) 1 else 0
},
r.progress = FALSE
)
summary(result_multiple_epochs)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.