The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Comparison with vanilla PELT

Setup

Logistic regression

#' Cost function for Logistic regression, i.e. binomial family in GLM.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#'     the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_binomial <- function(data, family = "binomial") {
  data <- as.matrix(data)
  p <- dim(data)[2] - 1
  out <- fastglm::fastglm(
    as.matrix(data[, 1:p]), data[, p + 1],
    family = family
  )
  return(out$deviance / 2)
}

#' Implementation of vanilla PELT for logistic regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#'     likelihood values for each segment.
pelt_vanilla_binomial <- function(data, beta, cost = cost_glm_binomial) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)
  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:m)
    {
      k <- set[i] + 1
      cval[i] <- 0
      if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ]))
    }
    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    Fobj <- c(Fobj, min_val)
  }
  cp <- cp_set[[n + 1]]
  nLL <- 0
  cp_loc <- unique(c(0, cp, n))
  for (i in 1:(length(cp_loc) - 1))
  {
    seg <- (cp_loc[i] + 1):cp_loc[i + 1]
    data_seg <- data[seg, ]
    out <- fastglm::fastglm(
      as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
      family = "binomial"
    )
    nLL <- out$deviance / 2 + nLL
  }

  output <- list(cp, nLL)
  names(output) <- c("cp", "nLL")
  return(output)
}

#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#'     averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'     the Hessian matrix.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#'     coefficients so far and all the Hessian matrices.
cost_logistic_update <- function(
    data_new, coef, cum_coef, cmatrix, epsilon = 1e-10) {
  p <- length(data_new) - 1
  X_new <- data_new[1:p]
  Y_new <- data_new[p + 1]
  eta <- X_new %*% coef
  mu <- 1 / (1 + exp(-eta))
  cmatrix <- cmatrix + (X_new %o% X_new) * as.numeric((1 - mu) * mu)
  lik_dev <- as.numeric(-(Y_new - mu)) * X_new
  coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
  cum_coef <- cum_coef + coef
  return(list(coef, cum_coef, cmatrix))
}

#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_binomial <- function(data, b) {
  p <- dim(data)[2] - 1
  X <- data[, 1:p, drop = FALSE]
  Y <- data[, p + 1, drop = FALSE]
  u <- as.numeric(X %*% b)
  L <- -Y * u + log(1 + exp(u))
  return(sum(L))
}

#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#'     beginning, ending and between change points.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#'     likelihood for each segment based on the change points guess.
segd_binomial <- function(data, beta, B = 10, trim = 0.025) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)

  # choose the initial values based on pre-segmentation

  index <- rep(1:B, rep(n / B, B))
  coef.int <- matrix(NA, B, p)
  for (i in 1:B)
  {
    out <- fastglm::fastglm(
      as.matrix(data[index == i, 1:p]),
      data[index == i, p + 1],
      family = "binomial"
    )
    coef.int[i, ] <- coef(out)
  }
  X1 <- data[1, 1:p]
  cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
  e_eta <- exp(coef %*% X1)
  const <- e_eta / (1 + e_eta)^2
  cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))

  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)

    for (i in 1:(m - 1))
    {
      coef_c <- coef[, i]
      cum_coef_c <- cum_coef[, i]
      cmatrix_c <- cmatrix[, , i]
      out <- cost_logistic_update(data[t, ], coef_c, cum_coef_c, cmatrix_c)
      coef[, i] <- out[[1]]
      cum_coef[, i] <- out[[2]]
      cmatrix[, , i] <- out[[3]]
      k <- set[i] + 1
      cval[i] <- 0
      if (t - k >= p - 1) {
        cval[i] <-
          neg_log_lik_binomial(data[k:t, ], cum_coef[, i] / (t - k + 1))
      }
    }

    # the choice of initial values requires further investigation

    cval[m] <- 0
    Xt <- data[t, 1:p]
    cum_coef_add <- coef_add <- coef.int[index[t], ]
    e_eta_t <- exp(coef_add %*% Xt)
    const <- e_eta_t / (1 + e_eta_t)^2
    cmatrix_add <- (Xt %o% Xt) * as.numeric(const)

    coef <- cbind(coef, coef_add)
    cum_coef <- cbind(cum_coef, cum_coef_add)
    cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)

    # Adding a momentum term (TBD)

    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    coef <- coef[, ind2, drop = FALSE]
    cum_coef <- cum_coef[, ind2, drop = FALSE]
    cmatrix <- cmatrix[, , ind2, drop = FALSE]
    Fobj <- c(Fobj, min_val)
  }

  # Remove change-points close to the boundaries

  cp <- cp_set[[n + 1]]
  if (length(cp) > 0) {
    ind3 <- (seq_len(length(cp)))[(cp < trim * n) | (cp > (1 - trim) * n)]
    cp <- cp[-ind3]
  }

  nLL <- 0
  cp_loc <- unique(c(0, cp, n))
  for (i in 1:(length(cp_loc) - 1))
  {
    seg <- (cp_loc[i] + 1):cp_loc[i + 1]
    data_seg <- data[seg, ]
    out <- fastglm::fastglm(
      as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
      family = "binomial"
    )
    nLL <- out$deviance / 2 + nLL
  }

  output <- list(cp, nLL)
  names(output) <- c("cp", "nLL")
  return(output)
}

Poisson regression

#' Cost function for Poisson regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#'     the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_poisson <- function(data, family = "poisson") {
  data <- as.matrix(data)
  p <- dim(data)[2] - 1
  out <- fastglm::fastglm(as.matrix(data[, 1:p]), data[, p + 1], family = family)
  return(out$deviance / 2)
}

#' Implementation of vanilla PELT for poisson regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#'     likelihood values for each segment.
pelt_vanilla_poisson <- function(data, beta, cost = cost_glm_poisson) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)
  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:m)
    {
      k <- set[i] + 1
      if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ])) else cval[i] <- 0
    }
    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    Fobj <- c(Fobj, min_val)
    # if (t %% 100 == 0) print(t)
  }
  cp <- cp_set[[n + 1]]
  output <- list(cp)
  names(output) <- c("cp")

  return(output)
}

#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#'     averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'     the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#'     coefficients so far and all the Hessian matrices.
cost_poisson_update <- function(data_new, coef, cum_coef, cmatrix, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
  p <- length(data_new) - 1
  X_new <- data_new[1:p]
  Y_new <- data_new[p + 1]
  eta <- X_new %*% coef
  mu <- exp(eta)
  cmatrix <- cmatrix + (X_new %o% X_new) * min(as.numeric(mu), G)
  lik_dev <- as.numeric(-(Y_new - mu)) * X_new
  coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
  coef <- pmin(pmax(coef, L), H)
  cum_coef <- cum_coef + coef
  return(list(coef, cum_coef, cmatrix))
}

#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_poisson <- function(data, b) {
  p <- dim(data)[2] - 1
  X <- data[, 1:p, drop = FALSE]
  Y <- data[, p + 1, drop = FALSE]
  u <- as.numeric(X %*% b)
  L <- -Y * u + exp(u) + lfactorial(Y)
  return(sum(L))
}

#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#'     beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'    the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#'     likelihood for each segment based on the change points guess.
segd_poisson <- function(data, beta, B = 10, trim = 0.03, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)

  # choose the initial values based on pre-segmentation

  index <- rep(1:B, rep(n / B, B))
  coef.int <- matrix(NA, B, p)
  for (i in 1:B)
  {
    out <- fastglm::fastglm(x = as.matrix(data[index == i, 1:p]), y = data[index == i, p + 1], family = "poisson")
    coef.int[i, ] <- coef(out)
  }
  X1 <- data[1, 1:p]
  cum_coef <- coef <- pmin(pmax(matrix(coef.int[1, ], p, 1), L), H)
  e_eta <- exp(coef %*% X1)
  const <- e_eta
  cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))

  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:(m - 1))
    {
      coef_c <- coef[, i]
      cum_coef_c <- cum_coef[, i]
      cmatrix_c <- cmatrix[, , i]
      out <- cost_poisson_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, epsilon = epsilon, G = G, L = L, H = H)
      coef[, i] <- out[[1]]
      cum_coef[, i] <- out[[2]]
      cmatrix[, , i] <- out[[3]]
      k <- set[i] + 1
      cum_coef_win <- pmin(pmax(cum_coef[, i] / (t - k + 1), L), H)
      if (t - k >= p - 1) cval[i] <- neg_log_lik_poisson(data[k:t, ], cum_coef_win) else cval[i] <- 0
    }

    # the choice of initial values requires further investigation

    cval[m] <- 0
    Xt <- data[t, 1:p]
    cum_coef_add <- coef_add <- pmin(pmax(coef.int[index[t], ], L), H)
    e_eta_t <- exp(coef_add %*% Xt)
    const <- e_eta_t
    cmatrix_add <- (Xt %o% Xt) * as.numeric(const)
    coef <- cbind(coef, coef_add)
    cum_coef <- cbind(cum_coef, cum_coef_add)
    cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)

    # Adding a momentum term (TBD)

    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    coef <- coef[, ind2, drop = FALSE]
    cum_coef <- cum_coef[, ind2, drop = FALSE]
    cmatrix <- cmatrix[, , ind2, drop = FALSE]
    Fobj <- c(Fobj, min_val)
  }

  # Remove change-points close to the boundaries

  cp <- cp_set[[n + 1]]
  if (length(cp) > 0) {
    ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
    if (length(ind3) > 0) cp <- cp[-ind3]
  }

  cp <- sort(unique(c(0, cp)))
  index <- which((diff(cp) < trim * n) == TRUE)
  if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
  cp <- cp[cp > 0]

  # nLL <- 0
  # cp_loc <- unique(c(0,cp,n))
  # for(i in 1:(length(cp_loc)-1))
  # {
  #   seg <- (cp_loc[i]+1):cp_loc[i+1]
  #   data_seg <- data[seg,]
  #   out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="Poisson")
  #   nLL <- out$deviance/2 + nLL
  # }

  # output <- list(cp, nLL)
  # names(output) <- c("cp", "nLL")

  output <- list(cp)
  names(output) <- c("cp")

  return(output)
}

# Generate data from poisson regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#'    assignments.
data_gen_poisson <- function(n, d, true.coef, true.cp.loc, Sigma) {
  loc <- unique(c(0, true.cp.loc, n))
  if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
  x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
  y <- NULL
  for (i in 1:(length(loc) - 1))
  {
    mu <- exp(x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE])
    group <- rpois(length(mu), mu)
    y <- c(y, group)
  }
  data <- cbind(x, y)
  true_cluster <- rep(1:(length(loc) - 1), diff(loc))
  result <- list(data, true_cluster)
  return(result)
}

Penalized linear regression

#' Cost function for penalized linear regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#'     the response variable.
#' @param lambda Penalty coefficient.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_lasso <- function(data, lambda, family = "gaussian") {
  data <- as.matrix(data)
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  out <- glmnet::glmnet(as.matrix(data[, 1:p]), data[, p + 1], family = family, lambda = lambda)
  return(deviance(out) / 2)
}

#' Implementation of vanilla PELT for penalized linear regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#'     likelihood values for each segment.
pelt_vanilla_lasso <- function(data, beta, B = 10, cost = cost_lasso, family = "gaussian") {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  index <- rep(1:B, rep(n / B, B))
  err_sd <- act_num <- rep(NA, B)
  for (i in 1:B)
  {
    cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
    coef <- coef(cvfit, s = "lambda.1se")[-1]
    resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef)
    err_sd[i] <- sqrt(mean(resi^2))
    act_num[i] <- sum(abs(coef) > 0)
  }
  err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
  act_num_mean <- mean(act_num)
  beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices

  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)
  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:m)
    {
      k <- set[i] + 1
      if (t - k >= 1) cval[i] <- suppressWarnings(cost(data[k:t, ], lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))) else cval[i] <- 0
    }
    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    Fobj <- c(Fobj, min_val)
    if (t %% 100 == 0) print(t)
  }
  cp <- cp_set[[n + 1]]
  # nLL <- 0
  # cp_loc <- unique(c(0,cp,n))
  # for(i in 1:(length(cp_loc)-1))
  # {
  #  seg <- (cp_loc[i]+1):cp_loc[i+1]
  #  data_seg <- data[seg,]
  #  out <- glmnet(as.matrix(data_seg[, 1:p]), data_seg[, p+1], lambda=lambda, family=family)
  #  nLL <- deviance(out)/2 + nLL
  # }
  # output <- list(cp, nLL)
  output <- list(cp)
  names(output) <- c("cp")
  return(output)
}

#' Function to update the coefficients using gradient descent.
#' @param a Coefficient to be updated.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Updated coefficient.
soft_threshold <- function(a, lambda) {
  sign(a) * pmax(abs(a) - lambda, 0)
}

#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#'     averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#'     coefficients so far and all the Hessian matrices.
cost_lasso_update <- function(data_new, coef, cum_coef, cmatrix, lambda) {
  p <- length(data_new) - 1
  X_new <- data_new[1:p]
  Y_new <- data_new[p + 1]
  mu <- X_new %*% coef
  cmatrix <- cmatrix + X_new %o% X_new
  # B <- as.vector(cmatrix_inv%*%X_new)
  # cmatrix_inv <- cmatrix_inv - B%o%B/(1+sum(X_new*B))
  lik_dev <- as.numeric(-(Y_new - mu)) * X_new
  coef <- coef - solve(cmatrix, lik_dev)
  nc <- norm(cmatrix, type = "F") # the choice of norm affects the speed. Spectral norm is more accurate but slower than F norm.
  coef <- soft_threshold(coef, lambda / nc)
  cum_coef <- cum_coef + coef
  return(list(coef, cum_coef, cmatrix))
}

#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_lasso <- function(data, b, lambda) {
  p <- dim(data)[2] - 1
  X <- data[, 1:p, drop = FALSE]
  Y <- data[, p + 1, drop = FALSE]
  resi <- Y - X %*% b
  L <- sum(resi^2) / 2 + lambda * sum(abs(b))
  return(L)
}

#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#'     beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'    the Hessian matrix.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#'     likelihood for each segment based on the change points guess.
segd_lasso <- function(data, beta, B = 10, trim = 0.025, epsilon = 1e-5, family = "gaussian") {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)

  # choose the initial values based on pre-segmentation

  index <- rep(1:B, rep(n / B, B))
  coef.int <- matrix(NA, B, p)
  err_sd <- act_num <- rep(NA, B)
  for (i in 1:B)
  {
    cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
    coef.int[i, ] <- coef(cvfit, s = "lambda.1se")[-1]
    resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef.int[i, ])
    err_sd[i] <- sqrt(mean(resi^2))
    act_num[i] <- sum(abs(coef.int[i, ]) > 0)
  }
  err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
  act_num_mean <- mean(act_num)
  beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices

  X1 <- data[1, 1:p]
  cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
  eta <- coef %*% X1
  # c_int <- diag(1/epsilon,p) - X1%o%X1/epsilon^2/(1+sum(X1^2)/epsilon)
  # cmatrix_inv <- array(c_int, c(p,p,1))
  cmatrix <- array(X1 %o% X1 + epsilon * diag(1, p), c(p, p, 1))

  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)

    for (i in 1:(m - 1))
    {
      coef_c <- coef[, i]
      cum_coef_c <- cum_coef[, i]
      # cmatrix_inv_c <- cmatrix_inv[,,i]
      cmatrix_c <- cmatrix[, , i]
      k <- set[i] + 1
      out <- cost_lasso_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))
      coef[, i] <- out[[1]]
      cum_coef[, i] <- out[[2]]
      # cmatrix_inv[,,i] <- out[[3]]
      cmatrix[, , i] <- out[[3]]
      if (t - k >= 2) cval[i] <- neg_log_lik_lasso(data[k:t, ], cum_coef[, i] / (t - k + 1), lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1))) else cval[i] <- 0
    }

    # the choice of initial values requires further investigation

    cval[m] <- 0
    Xt <- data[t, 1:p]
    cum_coef_add <- coef_add <- coef.int[index[t], ]
    # cmatrix_inv_add <- diag(1/epsilon,p) - Xt%o%Xt/epsilon^2/(1+sum(Xt^2)/epsilon)

    coef <- cbind(coef, coef_add)
    cum_coef <- cbind(cum_coef, cum_coef_add)
    # cmatrix_inv <- abind::abind(cmatrix_inv, cmatrix_inv_add, along=3)
    cmatrix <- abind::abind(cmatrix, Xt %o% Xt + epsilon * diag(1, p), along = 3)

    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    coef <- coef[, ind2, drop = FALSE]
    cum_coef <- cum_coef[, ind2, drop = FALSE]
    cmatrix <- cmatrix[, , ind2, drop = FALSE]
    # cmatrix_inv <- cmatrix_inv[,,ind2,drop=FALSE]
    Fobj <- c(Fobj, min_val)
  }

  # Remove change-points close to the boundaries and merge change-points

  cp <- cp_set[[n + 1]]
  if (length(cp) > 0) {
    ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
    if (length(ind3) > 0) cp <- cp[-ind3]
  }

  cp <- sort(unique(c(0, cp)))
  index <- which((diff(cp) < trim * n) == TRUE)
  if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
  cp <- cp[cp > 0]

  # nLL <- 0
  # cp_loc <- unique(c(0,cp,n))
  # for(i in 1:(length(cp_loc)-1))
  # {
  #  seg <- (cp_loc[i]+1):cp_loc[i+1]
  #  data_seg <- data[seg,]
  #  out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="binomial")
  #  nLL <- out$deviance/2 + nLL
  # }

  output <- list(cp)
  names(output) <- c("cp")
  return(output)
}

# Generate data from penalized linear regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @param evar Error variance.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#'    assignments.
data_gen_lasso <- function(n, d, true.coef, true.cp.loc, Sigma, evar) {
  loc <- unique(c(0, true.cp.loc, n))
  if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
  x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
  y <- NULL
  for (i in 1:(length(loc) - 1))
  {
    Xb <- x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE]
    add <- Xb + rnorm(length(Xb), sd = sqrt(evar))
    y <- c(y, add)
  }
  data <- cbind(x, y)
  true_cluster <- rep(1:(length(loc) - 1), diff(loc))
  result <- list(data, true_cluster)
  return(result)
}

Logistic regression

set.seed(1)
p <- 5
x <- matrix(rnorm(300 * p, 0, 1), ncol = p)

# Randomly generate coefficients with different means.
theta <- rbind(rnorm(p, 0, 1), rnorm(p, 2, 1))

# Randomly generate response variables based on the segmented data and
# corresponding coefficients
y <- c(
  rbinom(125, 1, 1 / (1 + exp(-x[1:125, ] %*% theta[1, ]))),
  rbinom(300 - 125, 1, 1 / (1 + exp(-x[(125 + 1):300, ] %*% theta[2, ])))
)

segd_binomial(cbind(x, y), (p + 1) * log(300) / 2, B = 5)$cp
#> [1] 125

fastcpd.binomial(
  cbind(y, x),
  segment_count = 5,
  beta = "BIC",
  cost_adjustment = "BIC",
  r.progress = FALSE
)@cp_set
#> [1] 125

pelt_vanilla_binomial(cbind(x, y), (p + 1) * log(300) / 2)$cp
#> [1]   0 125

fastcpd.binomial(
  cbind(y, x),
  segment_count = 5,
  vanilla_percentage = 1,
  beta = "BIC",
  cost_adjustment = "BIC",
  r.progress = FALSE
)@cp_set
#> [1] 125

Poisson regression

set.seed(1)
n <- 1500
d <- 5
rho <- 0.9
Sigma <- array(0, c(d, d))
for (i in 1:d) {
  Sigma[i, ] <- rho^(abs(i - (1:d)))
}
delta <- c(5, 7, 9, 11, 13)
a.sq <- 1
delta.new <-
  delta * sqrt(a.sq) / sqrt(as.numeric(t(delta) %*% Sigma %*% delta))
true.cp.loc <- c(375, 750, 1125)

# regression coefficients
true.coef <- matrix(0, nrow = d, ncol = length(true.cp.loc) + 1)
true.coef[, 1] <- c(1, 1.2, -1, 0.5, -2)
true.coef[, 2] <- true.coef[, 1] + delta.new
true.coef[, 3] <- true.coef[, 1]
true.coef[, 4] <- true.coef[, 3] - delta.new

out <- data_gen_poisson(n, d, true.coef, true.cp.loc, Sigma)
data <- out[[1]]
g_tr <- out[[2]]
beta <- log(n) * (d + 1) / 2

segd_poisson(
  data, beta, trim = 0.03, B = 10, epsilon = 0.001, G = 10^10, L = -20, H = 20
)$cp
#> [1]  380  751 1136 1251

fastcpd.poisson(
  cbind(data[, d + 1], data[, 1:d]),
  beta = beta,
  cost_adjustment = "BIC",
  epsilon = 0.001,
  segment_count = 10,
  r.progress = FALSE
)@cp_set
#> [1]  380  751 1136 1251

pelt_vanilla_poisson(data, beta)$cp
#> [1]    0  374  752 1133

fastcpd.poisson(
  cbind(data[, d + 1], data[, 1:d]),
  segment_count = 10,
  vanilla_percentage = 1,
  beta = beta,
  cost_adjustment = "BIC",
  r.progress = FALSE
)@cp_set
#> [1]  374  752 1133

Penalized linear regression

set.seed(1)
n <- 1000
s <- 3
d <- 50
evar <- 0.5
Sigma <- diag(1, d)
true.cp.loc <- c(100, 300, 500, 800, 900)
seg <- length(true.cp.loc) + 1
true.coef <- matrix(rnorm(seg * s), s, seg)
true.coef <- rbind(true.coef, matrix(0, d - s, seg))
out <- data_gen_lasso(n, d, true.coef, true.cp.loc, Sigma, evar)
data <- out[[1]]
beta <- log(n) / 2 # beta here has different meaning

segd_lasso(data, beta, B = 10, trim = 0.025)$cp
#> [1] 100 300 520 800 901

fastcpd.lasso(
  cbind(data[, d + 1], data[, 1:d]),
  epsilon = 1e-5,
  beta = beta,
  cost_adjustment = "BIC",
  pruning_coef = 0,
  r.progress = FALSE
)@cp_set
#> [1] 100 300 520 800 901

pelt_vanilla_lasso(data, beta, cost = cost_lasso)$cp
#> [1] 100
#> [1] 200
#> [1] 300
#> [1] 400
#> [1] 500
#> [1] 600
#> [1] 700
#> [1] 800
#> [1] 900
#> [1] 1000
#> [1]   0 103 299 510 800 900

fastcpd.lasso(
  cbind(data[, d + 1], data[, 1:d]),
  vanilla_percentage = 1,
  epsilon = 1e-5,
  beta = beta,
  cost_adjustment = "BIC",
  pruning_coef = 0,
  r.progress = FALSE
)@cp_set
#> [1] 103 299 510 800 900

Notes

The evaluation of this vignette is set to be FALSE.

Appendix: all code snippets

knitr::opts_chunk$set(
  collapse = TRUE, comment = "#>", eval = FALSE, cache = FALSE,
  warning = FALSE, fig.width = 8, fig.height = 5
)
library(fastcpd)
#' Cost function for Logistic regression, i.e. binomial family in GLM.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#'     the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_binomial <- function(data, family = "binomial") {
  data <- as.matrix(data)
  p <- dim(data)[2] - 1
  out <- fastglm::fastglm(
    as.matrix(data[, 1:p]), data[, p + 1],
    family = family
  )
  return(out$deviance / 2)
}

#' Implementation of vanilla PELT for logistic regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#'     likelihood values for each segment.
pelt_vanilla_binomial <- function(data, beta, cost = cost_glm_binomial) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)
  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:m)
    {
      k <- set[i] + 1
      cval[i] <- 0
      if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ]))
    }
    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    Fobj <- c(Fobj, min_val)
  }
  cp <- cp_set[[n + 1]]
  nLL <- 0
  cp_loc <- unique(c(0, cp, n))
  for (i in 1:(length(cp_loc) - 1))
  {
    seg <- (cp_loc[i] + 1):cp_loc[i + 1]
    data_seg <- data[seg, ]
    out <- fastglm::fastglm(
      as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
      family = "binomial"
    )
    nLL <- out$deviance / 2 + nLL
  }

  output <- list(cp, nLL)
  names(output) <- c("cp", "nLL")
  return(output)
}

#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#'     averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'     the Hessian matrix.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#'     coefficients so far and all the Hessian matrices.
cost_logistic_update <- function(
    data_new, coef, cum_coef, cmatrix, epsilon = 1e-10) {
  p <- length(data_new) - 1
  X_new <- data_new[1:p]
  Y_new <- data_new[p + 1]
  eta <- X_new %*% coef
  mu <- 1 / (1 + exp(-eta))
  cmatrix <- cmatrix + (X_new %o% X_new) * as.numeric((1 - mu) * mu)
  lik_dev <- as.numeric(-(Y_new - mu)) * X_new
  coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
  cum_coef <- cum_coef + coef
  return(list(coef, cum_coef, cmatrix))
}

#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_binomial <- function(data, b) {
  p <- dim(data)[2] - 1
  X <- data[, 1:p, drop = FALSE]
  Y <- data[, p + 1, drop = FALSE]
  u <- as.numeric(X %*% b)
  L <- -Y * u + log(1 + exp(u))
  return(sum(L))
}

#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#'     beginning, ending and between change points.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#'     likelihood for each segment based on the change points guess.
segd_binomial <- function(data, beta, B = 10, trim = 0.025) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)

  # choose the initial values based on pre-segmentation

  index <- rep(1:B, rep(n / B, B))
  coef.int <- matrix(NA, B, p)
  for (i in 1:B)
  {
    out <- fastglm::fastglm(
      as.matrix(data[index == i, 1:p]),
      data[index == i, p + 1],
      family = "binomial"
    )
    coef.int[i, ] <- coef(out)
  }
  X1 <- data[1, 1:p]
  cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
  e_eta <- exp(coef %*% X1)
  const <- e_eta / (1 + e_eta)^2
  cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))

  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)

    for (i in 1:(m - 1))
    {
      coef_c <- coef[, i]
      cum_coef_c <- cum_coef[, i]
      cmatrix_c <- cmatrix[, , i]
      out <- cost_logistic_update(data[t, ], coef_c, cum_coef_c, cmatrix_c)
      coef[, i] <- out[[1]]
      cum_coef[, i] <- out[[2]]
      cmatrix[, , i] <- out[[3]]
      k <- set[i] + 1
      cval[i] <- 0
      if (t - k >= p - 1) {
        cval[i] <-
          neg_log_lik_binomial(data[k:t, ], cum_coef[, i] / (t - k + 1))
      }
    }

    # the choice of initial values requires further investigation

    cval[m] <- 0
    Xt <- data[t, 1:p]
    cum_coef_add <- coef_add <- coef.int[index[t], ]
    e_eta_t <- exp(coef_add %*% Xt)
    const <- e_eta_t / (1 + e_eta_t)^2
    cmatrix_add <- (Xt %o% Xt) * as.numeric(const)

    coef <- cbind(coef, coef_add)
    cum_coef <- cbind(cum_coef, cum_coef_add)
    cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)

    # Adding a momentum term (TBD)

    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    coef <- coef[, ind2, drop = FALSE]
    cum_coef <- cum_coef[, ind2, drop = FALSE]
    cmatrix <- cmatrix[, , ind2, drop = FALSE]
    Fobj <- c(Fobj, min_val)
  }

  # Remove change-points close to the boundaries

  cp <- cp_set[[n + 1]]
  if (length(cp) > 0) {
    ind3 <- (seq_len(length(cp)))[(cp < trim * n) | (cp > (1 - trim) * n)]
    cp <- cp[-ind3]
  }

  nLL <- 0
  cp_loc <- unique(c(0, cp, n))
  for (i in 1:(length(cp_loc) - 1))
  {
    seg <- (cp_loc[i] + 1):cp_loc[i + 1]
    data_seg <- data[seg, ]
    out <- fastglm::fastglm(
      as.matrix(data_seg[, 1:p]), data_seg[, p + 1],
      family = "binomial"
    )
    nLL <- out$deviance / 2 + nLL
  }

  output <- list(cp, nLL)
  names(output) <- c("cp", "nLL")
  return(output)
}
#' Cost function for Poisson regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#'     the response variable.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_glm_poisson <- function(data, family = "poisson") {
  data <- as.matrix(data)
  p <- dim(data)[2] - 1
  out <- fastglm::fastglm(as.matrix(data[, 1:p]), data[, p + 1], family = family)
  return(out$deviance / 2)
}

#' Implementation of vanilla PELT for poisson regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#'     likelihood values for each segment.
pelt_vanilla_poisson <- function(data, beta, cost = cost_glm_poisson) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)
  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:m)
    {
      k <- set[i] + 1
      if (t - k >= p - 1) cval[i] <- suppressWarnings(cost(data[k:t, ])) else cval[i] <- 0
    }
    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    Fobj <- c(Fobj, min_val)
    # if (t %% 100 == 0) print(t)
  }
  cp <- cp_set[[n + 1]]
  output <- list(cp)
  names(output) <- c("cp")

  return(output)
}

#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#'     averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'     the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#'     coefficients so far and all the Hessian matrices.
cost_poisson_update <- function(data_new, coef, cum_coef, cmatrix, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
  p <- length(data_new) - 1
  X_new <- data_new[1:p]
  Y_new <- data_new[p + 1]
  eta <- X_new %*% coef
  mu <- exp(eta)
  cmatrix <- cmatrix + (X_new %o% X_new) * min(as.numeric(mu), G)
  lik_dev <- as.numeric(-(Y_new - mu)) * X_new
  coef <- coef - solve(cmatrix + epsilon * diag(1, p), lik_dev)
  coef <- pmin(pmax(coef, L), H)
  cum_coef <- cum_coef + coef
  return(list(coef, cum_coef, cmatrix))
}

#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_poisson <- function(data, b) {
  p <- dim(data)[2] - 1
  X <- data[, 1:p, drop = FALSE]
  Y <- data[, p + 1, drop = FALSE]
  u <- as.numeric(X %*% b)
  L <- -Y * u + exp(u) + lfactorial(Y)
  return(sum(L))
}

#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#'     beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'    the Hessian matrix.
#' @param G Upper bound for the coefficient.
#' @param L Winsorization lower bound.
#' @param H Winsorization upper bound.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#'     likelihood for each segment based on the change points guess.
segd_poisson <- function(data, beta, B = 10, trim = 0.03, epsilon = 0.001, G = 10^10, L = -20, H = 20) {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)

  # choose the initial values based on pre-segmentation

  index <- rep(1:B, rep(n / B, B))
  coef.int <- matrix(NA, B, p)
  for (i in 1:B)
  {
    out <- fastglm::fastglm(x = as.matrix(data[index == i, 1:p]), y = data[index == i, p + 1], family = "poisson")
    coef.int[i, ] <- coef(out)
  }
  X1 <- data[1, 1:p]
  cum_coef <- coef <- pmin(pmax(matrix(coef.int[1, ], p, 1), L), H)
  e_eta <- exp(coef %*% X1)
  const <- e_eta
  cmatrix <- array((X1 %o% X1) * as.numeric(const), c(p, p, 1))

  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:(m - 1))
    {
      coef_c <- coef[, i]
      cum_coef_c <- cum_coef[, i]
      cmatrix_c <- cmatrix[, , i]
      out <- cost_poisson_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, epsilon = epsilon, G = G, L = L, H = H)
      coef[, i] <- out[[1]]
      cum_coef[, i] <- out[[2]]
      cmatrix[, , i] <- out[[3]]
      k <- set[i] + 1
      cum_coef_win <- pmin(pmax(cum_coef[, i] / (t - k + 1), L), H)
      if (t - k >= p - 1) cval[i] <- neg_log_lik_poisson(data[k:t, ], cum_coef_win) else cval[i] <- 0
    }

    # the choice of initial values requires further investigation

    cval[m] <- 0
    Xt <- data[t, 1:p]
    cum_coef_add <- coef_add <- pmin(pmax(coef.int[index[t], ], L), H)
    e_eta_t <- exp(coef_add %*% Xt)
    const <- e_eta_t
    cmatrix_add <- (Xt %o% Xt) * as.numeric(const)
    coef <- cbind(coef, coef_add)
    cum_coef <- cbind(cum_coef, cum_coef_add)
    cmatrix <- abind::abind(cmatrix, cmatrix_add, along = 3)

    # Adding a momentum term (TBD)

    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    coef <- coef[, ind2, drop = FALSE]
    cum_coef <- cum_coef[, ind2, drop = FALSE]
    cmatrix <- cmatrix[, , ind2, drop = FALSE]
    Fobj <- c(Fobj, min_val)
  }

  # Remove change-points close to the boundaries

  cp <- cp_set[[n + 1]]
  if (length(cp) > 0) {
    ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
    if (length(ind3) > 0) cp <- cp[-ind3]
  }

  cp <- sort(unique(c(0, cp)))
  index <- which((diff(cp) < trim * n) == TRUE)
  if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
  cp <- cp[cp > 0]

  # nLL <- 0
  # cp_loc <- unique(c(0,cp,n))
  # for(i in 1:(length(cp_loc)-1))
  # {
  #   seg <- (cp_loc[i]+1):cp_loc[i+1]
  #   data_seg <- data[seg,]
  #   out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="Poisson")
  #   nLL <- out$deviance/2 + nLL
  # }

  # output <- list(cp, nLL)
  # names(output) <- c("cp", "nLL")

  output <- list(cp)
  names(output) <- c("cp")

  return(output)
}

# Generate data from poisson regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#'    assignments.
data_gen_poisson <- function(n, d, true.coef, true.cp.loc, Sigma) {
  loc <- unique(c(0, true.cp.loc, n))
  if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
  x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
  y <- NULL
  for (i in 1:(length(loc) - 1))
  {
    mu <- exp(x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE])
    group <- rpois(length(mu), mu)
    y <- c(y, group)
  }
  data <- cbind(x, y)
  true_cluster <- rep(1:(length(loc) - 1), diff(loc))
  result <- list(data, true_cluster)
  return(result)
}
#' Cost function for penalized linear regression.
#'
#' @param data Data to be used to calculate the cost values. The last column is
#'     the response variable.
#' @param lambda Penalty coefficient.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return Cost value for the corresponding segment of data.
cost_lasso <- function(data, lambda, family = "gaussian") {
  data <- as.matrix(data)
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  out <- glmnet::glmnet(as.matrix(data[, 1:p]), data[, p + 1], family = family, lambda = lambda)
  return(deviance(out) / 2)
}

#' Implementation of vanilla PELT for penalized linear regression type data.
#'
#' @param data Data to be used for change point detection.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param cost Cost function to be used to calculate cost values.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list consisting of two: change point locations and negative log
#'     likelihood values for each segment.
pelt_vanilla_lasso <- function(data, beta, B = 10, cost = cost_lasso, family = "gaussian") {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  index <- rep(1:B, rep(n / B, B))
  err_sd <- act_num <- rep(NA, B)
  for (i in 1:B)
  {
    cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
    coef <- coef(cvfit, s = "lambda.1se")[-1]
    resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef)
    err_sd[i] <- sqrt(mean(resi^2))
    act_num[i] <- sum(abs(coef) > 0)
  }
  err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
  act_num_mean <- mean(act_num)
  beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices

  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)
  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)
    for (i in 1:m)
    {
      k <- set[i] + 1
      if (t - k >= 1) cval[i] <- suppressWarnings(cost(data[k:t, ], lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))) else cval[i] <- 0
    }
    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    Fobj <- c(Fobj, min_val)
    if (t %% 100 == 0) print(t)
  }
  cp <- cp_set[[n + 1]]
  # nLL <- 0
  # cp_loc <- unique(c(0,cp,n))
  # for(i in 1:(length(cp_loc)-1))
  # {
  #  seg <- (cp_loc[i]+1):cp_loc[i+1]
  #  data_seg <- data[seg,]
  #  out <- glmnet(as.matrix(data_seg[, 1:p]), data_seg[, p+1], lambda=lambda, family=family)
  #  nLL <- deviance(out)/2 + nLL
  # }
  # output <- list(cp, nLL)
  output <- list(cp)
  names(output) <- c("cp")
  return(output)
}

#' Function to update the coefficients using gradient descent.
#' @param a Coefficient to be updated.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Updated coefficient.
soft_threshold <- function(a, lambda) {
  sign(a) * pmax(abs(a) - lambda, 0)
}

#' Function to update the coefficients using gradient descent.
#'
#' @param data_new New data point used to update the coeffient.
#' @param coef Previous coeffient to be updated.
#' @param cum_coef Summation of all the past coefficients to be used in
#'     averaging.
#' @param cmatrix Hessian matrix in gradient descent.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return A list of values containing the new coefficients, summation of
#'     coefficients so far and all the Hessian matrices.
cost_lasso_update <- function(data_new, coef, cum_coef, cmatrix, lambda) {
  p <- length(data_new) - 1
  X_new <- data_new[1:p]
  Y_new <- data_new[p + 1]
  mu <- X_new %*% coef
  cmatrix <- cmatrix + X_new %o% X_new
  # B <- as.vector(cmatrix_inv%*%X_new)
  # cmatrix_inv <- cmatrix_inv - B%o%B/(1+sum(X_new*B))
  lik_dev <- as.numeric(-(Y_new - mu)) * X_new
  coef <- coef - solve(cmatrix, lik_dev)
  nc <- norm(cmatrix, type = "F") # the choice of norm affects the speed. Spectral norm is more accurate but slower than F norm.
  coef <- soft_threshold(coef, lambda / nc)
  cum_coef <- cum_coef + coef
  return(list(coef, cum_coef, cmatrix))
}

#' Calculate negative log likelihood given data segment and guess of
#' coefficient.
#'
#' @param data Data to be used to calculate the negative log likelihood.
#' @param b Guess of the coefficient.
#' @param lambda Penalty coefficient.
#' @keywords internal
#'
#' @noRd
#' @return Negative log likelihood.
neg_log_lik_lasso <- function(data, b, lambda) {
  p <- dim(data)[2] - 1
  X <- data[, 1:p, drop = FALSE]
  Y <- data[, p + 1, drop = FALSE]
  resi <- Y - X %*% b
  L <- sum(resi^2) / 2 + lambda * sum(abs(b))
  return(L)
}

#' Find change points using dynamic programming with pruning and SeGD.
#'
#' @param data Data used to find change points.
#' @param beta Penalty coefficient for the number of change points.
#' @param B Initial guess on the number of change points.
#' @param trim Propotion of the data to ignore the change points at the
#'     beginning, ending and between change points.
#' @param epsilon Small adjustment to avoid singularity when doing inverse on
#'    the Hessian matrix.
#' @param family Family of the distribution.
#' @keywords internal
#'
#' @noRd
#' @return A list containing potential change point locations and negative log
#'     likelihood for each segment based on the change points guess.
segd_lasso <- function(data, beta, B = 10, trim = 0.025, epsilon = 1e-5, family = "gaussian") {
  n <- dim(data)[1]
  p <- dim(data)[2] - 1
  Fobj <- c(-beta, 0)
  cp_set <- list(NULL, 0)
  set <- c(0, 1)

  # choose the initial values based on pre-segmentation

  index <- rep(1:B, rep(n / B, B))
  coef.int <- matrix(NA, B, p)
  err_sd <- act_num <- rep(NA, B)
  for (i in 1:B)
  {
    cvfit <- glmnet::cv.glmnet(as.matrix(data[index == i, 1:p]), data[index == i, p + 1], family = family)
    coef.int[i, ] <- coef(cvfit, s = "lambda.1se")[-1]
    resi <- data[index == i, p + 1] - as.matrix(data[index == i, 1:p]) %*% as.numeric(coef.int[i, ])
    err_sd[i] <- sqrt(mean(resi^2))
    act_num[i] <- sum(abs(coef.int[i, ]) > 0)
  }
  err_sd_mean <- mean(err_sd) # only works if error sd is unchanged.
  act_num_mean <- mean(act_num)
  beta <- (act_num_mean + 1) * beta # seems to work but there might be better choices

  X1 <- data[1, 1:p]
  cum_coef <- coef <- matrix(coef.int[1, ], p, 1)
  eta <- coef %*% X1
  # c_int <- diag(1/epsilon,p) - X1%o%X1/epsilon^2/(1+sum(X1^2)/epsilon)
  # cmatrix_inv <- array(c_int, c(p,p,1))
  cmatrix <- array(X1 %o% X1 + epsilon * diag(1, p), c(p, p, 1))

  for (t in 2:n)
  {
    m <- length(set)
    cval <- rep(NA, m)

    for (i in 1:(m - 1))
    {
      coef_c <- coef[, i]
      cum_coef_c <- cum_coef[, i]
      # cmatrix_inv_c <- cmatrix_inv[,,i]
      cmatrix_c <- cmatrix[, , i]
      k <- set[i] + 1
      out <- cost_lasso_update(data[t, ], coef_c, cum_coef_c, cmatrix_c, lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1)))
      coef[, i] <- out[[1]]
      cum_coef[, i] <- out[[2]]
      # cmatrix_inv[,,i] <- out[[3]]
      cmatrix[, , i] <- out[[3]]
      if (t - k >= 2) cval[i] <- neg_log_lik_lasso(data[k:t, ], cum_coef[, i] / (t - k + 1), lambda = err_sd_mean * sqrt(2 * log(p) / (t - k + 1))) else cval[i] <- 0
    }

    # the choice of initial values requires further investigation

    cval[m] <- 0
    Xt <- data[t, 1:p]
    cum_coef_add <- coef_add <- coef.int[index[t], ]
    # cmatrix_inv_add <- diag(1/epsilon,p) - Xt%o%Xt/epsilon^2/(1+sum(Xt^2)/epsilon)

    coef <- cbind(coef, coef_add)
    cum_coef <- cbind(cum_coef, cum_coef_add)
    # cmatrix_inv <- abind::abind(cmatrix_inv, cmatrix_inv_add, along=3)
    cmatrix <- abind::abind(cmatrix, Xt %o% Xt + epsilon * diag(1, p), along = 3)

    obj <- cval + Fobj[set + 1] + beta
    min_val <- min(obj)
    ind <- which(obj == min_val)[1]
    cp_set_add <- c(cp_set[[set[ind] + 1]], set[ind])
    cp_set <- append(cp_set, list(cp_set_add))
    ind2 <- (cval + Fobj[set + 1]) <= min_val
    set <- c(set[ind2], t)
    coef <- coef[, ind2, drop = FALSE]
    cum_coef <- cum_coef[, ind2, drop = FALSE]
    cmatrix <- cmatrix[, , ind2, drop = FALSE]
    # cmatrix_inv <- cmatrix_inv[,,ind2,drop=FALSE]
    Fobj <- c(Fobj, min_val)
  }

  # Remove change-points close to the boundaries and merge change-points

  cp <- cp_set[[n + 1]]
  if (length(cp) > 0) {
    ind3 <- (1:length(cp))[(cp < trim * n) | (cp > (1 - trim) * n)]
    if (length(ind3) > 0) cp <- cp[-ind3]
  }

  cp <- sort(unique(c(0, cp)))
  index <- which((diff(cp) < trim * n) == TRUE)
  if (length(index) > 0) cp <- floor((cp[-(index + 1)] + cp[-index]) / 2)
  cp <- cp[cp > 0]

  # nLL <- 0
  # cp_loc <- unique(c(0,cp,n))
  # for(i in 1:(length(cp_loc)-1))
  # {
  #  seg <- (cp_loc[i]+1):cp_loc[i+1]
  #  data_seg <- data[seg,]
  #  out <- fastglm(as.matrix(data_seg[, 1:p]), data_seg[, p+1], family="binomial")
  #  nLL <- out$deviance/2 + nLL
  # }

  output <- list(cp)
  names(output) <- c("cp")
  return(output)
}

# Generate data from penalized linear regression models with change-points
#' @param n Number of observations.
#' @param d Dimension of the covariates.
#' @param true.coef True regression coefficients.
#' @param true.cp.loc True change-point locations.
#' @param Sigma Covariance matrix of the covariates.
#' @param evar Error variance.
#' @keywords internal
#'
#' @noRd
#' @return A list containing the generated data and the true cluster
#'    assignments.
data_gen_lasso <- function(n, d, true.coef, true.cp.loc, Sigma, evar) {
  loc <- unique(c(0, true.cp.loc, n))
  if (dim(true.coef)[2] != length(loc) - 1) stop("true.coef and true.cp.loc do not match")
  x <- mvtnorm::rmvnorm(n, mean = rep(0, d), sigma = Sigma)
  y <- NULL
  for (i in 1:(length(loc) - 1))
  {
    Xb <- x[(loc[i] + 1):loc[i + 1], , drop = FALSE] %*% true.coef[, i, drop = FALSE]
    add <- Xb + rnorm(length(Xb), sd = sqrt(evar))
    y <- c(y, add)
  }
  data <- cbind(x, y)
  true_cluster <- rep(1:(length(loc) - 1), diff(loc))
  result <- list(data, true_cluster)
  return(result)
}
set.seed(1)
p <- 5
x <- matrix(rnorm(300 * p, 0, 1), ncol = p)

# Randomly generate coefficients with different means.
theta <- rbind(rnorm(p, 0, 1), rnorm(p, 2, 1))

# Randomly generate response variables based on the segmented data and
# corresponding coefficients
y <- c(
  rbinom(125, 1, 1 / (1 + exp(-x[1:125, ] %*% theta[1, ]))),
  rbinom(300 - 125, 1, 1 / (1 + exp(-x[(125 + 1):300, ] %*% theta[2, ])))
)

segd_binomial(cbind(x, y), (p + 1) * log(300) / 2, B = 5)$cp
#> [1] 125

fastcpd.binomial(
  cbind(y, x),
  segment_count = 5,
  beta = "BIC",
  cost_adjustment = "BIC",
  r.progress = FALSE
)@cp_set
#> [1] 125

pelt_vanilla_binomial(cbind(x, y), (p + 1) * log(300) / 2)$cp
#> [1]   0 125

fastcpd.binomial(
  cbind(y, x),
  segment_count = 5,
  vanilla_percentage = 1,
  beta = "BIC",
  cost_adjustment = "BIC",
  r.progress = FALSE
)@cp_set
#> [1] 125
set.seed(1)
n <- 1500
d <- 5
rho <- 0.9
Sigma <- array(0, c(d, d))
for (i in 1:d) {
  Sigma[i, ] <- rho^(abs(i - (1:d)))
}
delta <- c(5, 7, 9, 11, 13)
a.sq <- 1
delta.new <-
  delta * sqrt(a.sq) / sqrt(as.numeric(t(delta) %*% Sigma %*% delta))
true.cp.loc <- c(375, 750, 1125)

# regression coefficients
true.coef <- matrix(0, nrow = d, ncol = length(true.cp.loc) + 1)
true.coef[, 1] <- c(1, 1.2, -1, 0.5, -2)
true.coef[, 2] <- true.coef[, 1] + delta.new
true.coef[, 3] <- true.coef[, 1]
true.coef[, 4] <- true.coef[, 3] - delta.new

out <- data_gen_poisson(n, d, true.coef, true.cp.loc, Sigma)
data <- out[[1]]
g_tr <- out[[2]]
beta <- log(n) * (d + 1) / 2

segd_poisson(
  data, beta, trim = 0.03, B = 10, epsilon = 0.001, G = 10^10, L = -20, H = 20
)$cp
#> [1]  380  751 1136 1251

fastcpd.poisson(
  cbind(data[, d + 1], data[, 1:d]),
  beta = beta,
  cost_adjustment = "BIC",
  epsilon = 0.001,
  segment_count = 10,
  r.progress = FALSE
)@cp_set
#> [1]  380  751 1136 1251

pelt_vanilla_poisson(data, beta)$cp
#> [1]    0  374  752 1133

fastcpd.poisson(
  cbind(data[, d + 1], data[, 1:d]),
  segment_count = 10,
  vanilla_percentage = 1,
  beta = beta,
  cost_adjustment = "BIC",
  r.progress = FALSE
)@cp_set
#> [1]  374  752 1133
set.seed(1)
n <- 1000
s <- 3
d <- 50
evar <- 0.5
Sigma <- diag(1, d)
true.cp.loc <- c(100, 300, 500, 800, 900)
seg <- length(true.cp.loc) + 1
true.coef <- matrix(rnorm(seg * s), s, seg)
true.coef <- rbind(true.coef, matrix(0, d - s, seg))
out <- data_gen_lasso(n, d, true.coef, true.cp.loc, Sigma, evar)
data <- out[[1]]
beta <- log(n) / 2 # beta here has different meaning

segd_lasso(data, beta, B = 10, trim = 0.025)$cp
#> [1] 100 300 520 800 901

fastcpd.lasso(
  cbind(data[, d + 1], data[, 1:d]),
  epsilon = 1e-5,
  beta = beta,
  cost_adjustment = "BIC",
  pruning_coef = 0,
  r.progress = FALSE
)@cp_set
#> [1] 100 300 520 800 901

pelt_vanilla_lasso(data, beta, cost = cost_lasso)$cp
#> [1] 100
#> [1] 200
#> [1] 300
#> [1] 400
#> [1] 500
#> [1] 600
#> [1] 700
#> [1] 800
#> [1] 900
#> [1] 1000
#> [1]   0 103 299 510 800 900

fastcpd.lasso(
  cbind(data[, d + 1], data[, 1:d]),
  vanilla_percentage = 1,
  epsilon = 1e-5,
  beta = beta,
  cost_adjustment = "BIC",
  pruning_coef = 0,
  r.progress = FALSE
)@cp_set
#> [1] 103 299 510 800 900

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.