The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(fakir)
library(dplyr)
library(ggplot2)
library(sf)
The database fakes an after-sale client database for a Phone company. There is:
a client database with all characteristics of the clients.
a ticket database which contains all calls to the after-sale service of some clients having problems
Ticket centered dataset with already joined client characteristics
fake_ticket_client(vol = 10)
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> # A tibble: 10 × 25
#> ref num_client first last job age region id_dpt departement
#> <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
#> 1 DOSS-AMQN-002 79 Jovan O'Ke… Gene… 22 Île-d… 77 <NA>
#> 2 DOSS-NCKJ-010 69 Miss Lean… Emer… 68 <NA> 25 Doubs
#> 3 DOSS-GPBE-009 120 Odell Stok… Engi… 24 <NA> 17 Charente-M…
#> 4 DOSS-GRLN-001 31 Loren Lars… <NA> NA <NA> 33 <NA>
#> 5 DOSS-LEPJ-004 59 Maybelle Maye… Furt… 18 <NA> 33 <NA>
#> 6 DOSS-DUCL-005 118 Jamarion Ober… Engi… 18 Langu… 48 <NA>
#> 7 DOSS-OCED-003 77 Lee Scha… Admi… NA Poito… 17 Charente-M…
#> 8 DOSS-KXSJ-007 65 Demetric Auer Cont… 21 Pays … 49 <NA>
#> 9 DOSS-UITD-006 141 Wilfrid Harv… Educ… 53 <NA> 81 Tarn
#> 10 DOSS-SHKL-008 182 Addyson Nien… Earl… 65 Poito… 17 Charente-M…
#> # ℹ 16 more variables: cb_provider <chr>, name <chr>, entry_date <dttm>,
#> # fidelity_points <dbl>, priority_encoded <dbl>, priority <fct>,
#> # timestamp <date>, year <dbl>, month <dbl>, day <int>, supported <chr>,
#> # supported_encoded <int>, type <chr>, type_encoded <int>, state <fct>,
#> # source_call <fct>
<- fake_ticket_client(vol = 100, split = TRUE)
tickets_db #> old-style crs object detected; please recreate object with a recent sf::st_crs()
tickets_db#> $clients
#> # A tibble: 200 × 14
#> num_client first last job age region id_dpt departement cb_provider
#> * <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Solomon Heaney Civi… 53 Champ… 51 Marne Diners Clu…
#> 2 2 Karma William… Scie… 81 Auver… 63 Puy-de-Dôme VISA 13 di…
#> 3 3 Press Kulas Anim… NA Prove… 06 Alpes-Mari… <NA>
#> 4 4 Laken McDermo… <NA> NA Breta… 56 Morbihan <NA>
#> 5 5 Sydnie Jaskols… Hort… 30 Centre 36 <NA> <NA>
#> 6 6 Clayton Runolfs… Comm… NA Prove… 04 <NA> Diners Clu…
#> 7 7 Roberta Purdy-W… Fina… 60 Île-d… 91 Essonne <NA>
#> 8 8 Dr. RonaldM… Astr… 30 Rhône… 42 Loire <NA>
#> 9 9 Miss Alondra… Occu… 18 Aquit… 24 Dordogne Diners Clu…
#> 10 10 Vernice Ondrick… Clin… 19 Limou… 87 Haute-Vien… <NA>
#> # ℹ 190 more rows
#> # ℹ 5 more variables: name <chr>, entry_date <dttm>, fidelity_points <dbl>,
#> # priority_encoded <dbl>, priority <fct>
#>
#> $tickets
#> # A tibble: 100 × 10
#> ref num_client year month day timestamp supported type state
#> <chr> <chr> <dbl> <dbl> <int> <date> <chr> <chr> <fct>
#> 1 DOSS-GFEL-0028 1 2016 12 21 2016-12-21 Non Insta… Term…
#> 2 DOSS-UWYV-0016 22 2020 10 12 2020-10-12 Non Insta… Atte…
#> 3 DOSS-DKFC-0073 9 2020 11 16 2020-11-16 Non Insta… Term…
#> 4 DOSS-SAYJ-0047 8 2020 12 1 2020-12-01 Non Box Atte…
#> 5 DOSS-GSMZ-0080 30 2020 12 18 2020-12-18 Oui Insta… Inte…
#> 6 DOSS-UIOZ-0085 10 2020 12 30 2020-12-30 Oui Insta… Atte…
#> 7 DOSS-DSMI-0065 37 2021 1 27 2021-01-27 Non Ligne Atte…
#> 8 DOSS-JOYV-0029 37 2021 3 19 2021-03-19 Non Box Atte…
#> 9 DOSS-WPSG-0013 24 2021 3 26 2021-03-26 Non <NA> En c…
#> 10 DOSS-NHFG-0036 12 2021 4 12 2021-04-12 Non Insta… Atte…
#> # ℹ 90 more rows
#> # ℹ 1 more variable: source_call <fct>
ggplot(tickets_db$clients) +
aes(x = entry_date, y = fidelity_points) +
geom_point() +
geom_smooth()
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
ggplot(tickets_db$tickets) +
aes(x = type) +
geom_bar()
ggplot(tickets_db$tickets) +
aes(x = state) +
geom_bar()
fra_sf
.
{sf} package must be loaded.<- tickets_db$clients %>%
clients_map group_by(id_dpt) %>%
summarise(
number_of_clients = n(),
average_fidelity = mean(fidelity_points, na.rm = TRUE)
%>%
) full_join(fra_sf, by = "id_dpt") %>%
st_sf()
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
ggplot(clients_map) +
geom_sf(aes(fill = average_fidelity)) +
scale_fill_viridis_c() +
coord_sf(
crs = 2154,
datum = 4326
)
count(
fake_products(10),
category
)#> # A tibble: 7 × 2
#> category n
#> <chr> <int>
#> 1 Awesome 1
#> 2 Entertainment 1
#> 3 Fitness 1
#> 4 Industrial 1
#> 5 Lifestyle 3
#> 6 Medical 2
#> 7 Pets and Animals 1
fake_visits(
from = "2017-01-01",
to = "2017-01-31"
)#> # A tibble: 31 × 8
#> timestamp year month day home about blog contact
#> * <date> <dbl> <dbl> <int> <int> <int> <int> <int>
#> 1 2017-01-01 2017 1 1 369 220 404 210
#> 2 2017-01-02 2017 1 2 159 250 414 490
#> 3 2017-01-03 2017 1 3 436 170 498 456
#> 4 2017-01-04 2017 1 4 NA 258 526 392
#> 5 2017-01-05 2017 1 5 362 NA 407 291
#> 6 2017-01-06 2017 1 6 245 145 576 90
#> 7 2017-01-07 2017 1 7 NA NA 484 167
#> 8 2017-01-08 2017 1 8 461 103 441 NA
#> 9 2017-01-09 2017 1 9 337 113 673 379
#> 10 2017-01-10 2017 1 10 NA 169 308 139
#> # ℹ 21 more rows
fake_survey_answers(n = 10)
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> # A tibble: 30 × 12
#> id_individu age sexe region id_departement nom_departement
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 ID-NYDZ-010 NA <NA> <NA> 55 <NA>
#> 2 ID-NYDZ-010 NA <NA> <NA> 55 <NA>
#> 3 ID-NYDZ-010 NA <NA> <NA> 55 <NA>
#> 4 ID-PWLB-009 71 F Rhône-Alpes 38 Isère
#> 5 ID-PWLB-009 71 F Rhône-Alpes 38 Isère
#> 6 ID-PWLB-009 71 F Rhône-Alpes 38 Isère
#> 7 ID-NMQG-001 42 M Midi-Pyrénées 82 Tarn-et-Garonne
#> 8 ID-NMQG-001 42 M Midi-Pyrénées 82 Tarn-et-Garonne
#> 9 ID-NMQG-001 42 M Midi-Pyrénées 82 Tarn-et-Garonne
#> 10 ID-RJXN-002 71 O <NA> 17 Charente-Maritime
#> # ℹ 20 more rows
#> # ℹ 6 more variables: question_date <dttm>, year <dbl>, type <chr>,
#> # distance_km <dbl>, transport <fct>, temps_trajet_en_heures <dbl>
fake_survey_answers(n = 10, split = TRUE)
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
#> $individus
#> # A tibble: 10 × 8
#> id_individu age sexe region id_departement nom_departement
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 ID-NYDZ-010 NA <NA> Basse-Normandie 14 Calvados
#> 2 ID-PWLB-009 71 F Corse 2A Corse-du-Sud
#> 3 ID-NMQG-001 42 M <NA> 68 Haut-Rhin
#> 4 ID-RJXN-002 71 O Rhône-Alpes 01 Ain
#> 5 ID-MROK-007 41 M Basse-Normandie 14 Calvados
#> 6 ID-VMKS-004 33 O Lorraine 54 Meurthe-et-Mos…
#> 7 ID-XEMZ-003 81 O Provence-Alpes-Côte d… 84 Vaucluse
#> 8 ID-EUDQ-005 44 M Champagne-Ardenne 10 <NA>
#> 9 ID-DCIZ-008 92 O Aquitaine 64 Pyrénées-Atlan…
#> 10 ID-KPUS-006 57 O <NA> 54 Meurthe-et-Mos…
#> # ℹ 2 more variables: question_date <dttm>, year <dbl>
#>
#> $answers
#> # A tibble: 30 × 5
#> id_individu type distance_km transport temps_trajet_en_heures
#> <chr> <chr> <dbl> <fct> <dbl>
#> 1 ID-NYDZ-010 travail 12.2 voiture 0.15
#> 2 ID-NYDZ-010 commerces 9.61 bus 1.01
#> 3 ID-NYDZ-010 loisirs 549. avion 0.27
#> 4 ID-PWLB-009 travail 11.9 voiture 0.14
#> 5 ID-PWLB-009 commerces 27.4 voiture 0.34
#> 6 ID-PWLB-009 loisirs 210. train 0.42
#> 7 ID-NMQG-001 travail 2.38 velo 0.43
#> 8 ID-NMQG-001 commerces 14.9 voiture 0.18
#> 9 ID-NMQG-001 loisirs 446. train 0.89
#> 10 ID-RJXN-002 travail 6.18 mobylette 0.75
#> # ℹ 20 more rows
<- fake_survey_answers(n = 30)
answers #> old-style crs object detected; please recreate object with a recent sf::st_crs()
answers#> # A tibble: 90 × 12
#> id_individu age sexe region id_departement nom_departement
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 ID-MROK-007 NA M Nord-Pas-de-Calais 62 Pas-de-Calais
#> 2 ID-MROK-007 NA M Nord-Pas-de-Calais 62 Pas-de-Calais
#> 3 ID-MROK-007 NA M Nord-Pas-de-Calais 62 Pas-de-Calais
#> 4 ID-NYDZ-010 49 M Midi-Pyrénées 82 Tarn-et-Garonne
#> 5 ID-NYDZ-010 49 M Midi-Pyrénées 82 Tarn-et-Garonne
#> 6 ID-NYDZ-010 49 M Midi-Pyrénées 82 Tarn-et-Garonne
#> 7 ID-HXOG-015 50 M Bourgogne 71 <NA>
#> 8 ID-HXOG-015 50 M Bourgogne 71 <NA>
#> 9 ID-HXOG-015 50 M Bourgogne 71 <NA>
#> 10 ID-MZNB-024 70 F Aquitaine 47 Lot-et-Garonne
#> # ℹ 80 more rows
#> # ℹ 6 more variables: question_date <dttm>, year <dbl>, type <chr>,
#> # distance_km <dbl>, transport <fct>, temps_trajet_en_heures <dbl>
ggplot(answers) +
aes(age, log(distance_km), colour = type) +
geom_point() +
geom_smooth() +
facet_wrap(~type, scales = "free_y")
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
#> Warning: Removed 6 rows containing non-finite values (`stat_smooth()`).
#> Warning: Removed 6 rows containing missing values (`geom_point()`).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.