The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

factorH: functions reference

Function reference

This document collects call patterns and options for each public function. All formulas follow response ~ A + B (+ C …) with numeric response and factor predictors.

srh.kway.full()

Purpose: one-call pipeline: ANOVA on ranks + descriptives + post hocs + simple effects.
Syntax: srh.kway.full(y ~ A + B (+ C …), data, max_levels = 30)

Example:

res <- srh.kway.full(liking ~ gender + condition + age_cat, data = mimicry)
names(res)
res$anova[1:3]
head(res$summary)
names(res$posthoc_cells)
names(res$posthoc_simple)[1:3]
res$meta

Notes:

write.srh.kway.full.tsv()

Purpose: export the srh.kway.full() result into a single TSV file for fast formatting.
Syntax: write.srh.kway.full.tsv(obj, file = “srh_kway_full.tsv”, sep = “, na =”“, dec =”.”)

Example:

# you can of course provide your own path to the file outside the temporary folder
f <- file.path(tempdir(), "result.tsv")
write.srh.kway.full.tsv(res, file = f, dec = ",")
file.exists(f)

srh.kway()

Purpose: general k-way SRH-style ANOVA on ranks (Type II SS), tie-corrected p-values. Syntax: srh.kway(y ~ A + B (+ C …), data, clamp0 = TRUE, force_factors = TRUE, type = 2, …)

Example:

k3 <- srh.kway(liking ~ gender + condition + age_cat, data = mimicry)
k3

One-factor check (KW-like):

k1 <- srh.kway(liking ~ condition, data = mimicry)
k1

Two factor (Type III SS):

k3_ss3 <- srh.kway(liking ~ gender + condition, data = mimicry, type = 3)
k3_ss3

srh.effsize()

Purpose: 2-way SRH table with effect sizes from H.
Syntax: srh.effsize(y ~ A + B, data, clamp0 = TRUE, …)

Example:

e2 <- srh.effsize(liking ~ gender + condition, data = mimicry)
e2

nonpar.datatable()

Purpose: compact descriptive tables (APA-style), with global rank means, medians, quartiles, IQR.
Syntax: nonpar.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)

Example:

dt <- nonpar.datatable(liking ~ gender + condition, data = mimicry)
head(dt)

srh.posthoc()

Purpose: Dunn–Bonferroni pairwise comparison matrix for a specified effect.
Syntax: srh.posthoc(y ~ A (+ B + …), data, method = “bonferroni”, digits = 3, triangular = c(“lower”,“upper”,“full”), numeric = FALSE, force_factors = TRUE, sep = “.”)

Example:

ph <- srh.posthoc(liking ~ condition, data = mimicry)

srh.posthocs()

Purpose: Dunn–Bonferroni pairwise matrices for all effects (main and interactions).
Syntax: srh.posthocs(y ~ A + B (+ C …), data, …)

Example:

phs <- srh.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(phs)
phs[["gender:condition"]][1:5, 1:5]

srh.simple.posthoc()

Purpose: Simple-effects post hocs (pairwise comparisons within levels of conditioning factors).
Syntax: srh.simple.posthoc(y ~ A + B (+ C …), data, compare = NULL, scope = c(“within”,“global”), digits = 3)

Example:

simp <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry, compare = "gender", scope = "within")
head(simp)

srh.simple.posthocs()

Purpose: enumerate all simple-effect configurations for a given design.
Syntax: srh.simple.posthocs(y ~ A + B (+ C …), data)

Example:

sps <- srh.simple.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
head(names(sps), 6)

normality.datatable

Purpose: Shapiro–Wilk normality tests for the raw response within each subgroup for all non-empty combinations of RHS factors (main effects and interaction cells). Syntax: normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)

Example:

normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)

residuals.normality.datatable

Purpose: Shapiro–Wilk normality tests on residuals from a classical ANOVA model fitted to the selected RHS factors (full factorial for those factors), one test per model (global residuals). Syntax: residuals.normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)

Example:

residuals.normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)

residuals.cellwise.normality.datatable

Purpose: Shapiro–Wilk tests of residuals from an ANOVA model fitted to the selected RHS factors (full factorial), but tested separately within each cell defined by those factors. Syntax: residuals.cellwise.normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)

Example:

residuals.cellwise.normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)

balance.chisq.datatable

Purpose: Count-balance diagnostics across design factors. Syntax: balance.chisq.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)

Example:

balance.chisq.datatable(liking ~ gender + condition + age_cat, data = mimicry)

levene.plan.datatable

Purpose: Levene/Brown–Forsythe test for homogeneity of variances across the full-plan cells (highest-order interaction of RHS factors). Syntax: levene.plan.datatable(y ~ A + B (+ C …), data, center = “median”, force_factors = TRUE)

Examples:

levene.plan.datatable(liking ~ gender + condition + age_cat, data = mimicry)  
levene.plan.datatable(liking ~ gender + condition, data = mimicry, center = "mean")

plan.diagnostics

Purpose: Orchestrates all diagnostics in one call. Syntax: plan.diagnostics(y ~ A + B (+ C …), data, force_factors = TRUE)

Returned list:

$summary: percent_ok, ok_count, total, overall, plus per-type percentages:  
percent_ok_normality_raw, percent_ok_residuals_cellwise, percent_ok_balance_chisq, percent_ok_levene_full_plan.  
$results: normality_raw, residuals_cellwise_normality, levene_full_plan, balance_chisq.  

Examples:

diag_out <- plan.diagnostics(liking ~ gender + condition + age_cat, data = mimicry)  
diag_out$results$normality_raw  
diag_out$results$residuals_cellwise_normality  
diag_out$results$levene_full_plan  
diag_out$results$balance_chisq  
diag_out$summary

Formula tips and pitfalls

Example:

#coercing
mimicry$gender <- factor(mimicry$gender)
mimicry$condition <- factor(mimicry$condition)

Performance and reproducibility

C:116060334b62-reference.R

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.