The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This document collects call patterns and options for each public function. All formulas follow response ~ A + B (+ C …) with numeric response and factor predictors.
srh.kway.full()
Purpose: one-call pipeline: ANOVA on ranks +
descriptives + post hocs + simple effects.
Syntax: srh.kway.full(y ~ A + B (+ C …), data,
max_levels = 30)
Automatically chooses the ANOVA engine:
Returns a list: anova, summary, posthoc_cells, posthoc_simple, meta.
Placeholders:
Example:
res <- srh.kway.full(liking ~ gender + condition + age_cat, data = mimicry)
names(res)
res$anova[1:3]
head(res$summary)
names(res$posthoc_cells)
names(res$posthoc_simple)[1:3]
res$meta
Notes:
write.srh.kway.full.tsv()
Purpose: export the srh.kway.full() result into a
single TSV file for fast formatting.
Syntax: write.srh.kway.full.tsv(obj, file =
“srh_kway_full.tsv”, sep = “, na =”“, dec =”.”)
Example:
# you can of course provide your own path to the file outside the temporary folder
f <- file.path(tempdir(), "result.tsv")
write.srh.kway.full.tsv(res, file = f, dec = ",")
file.exists(f)
srh.kway()
Purpose: general k-way SRH-style ANOVA on ranks (Type II SS), tie-corrected p-values. Syntax: srh.kway(y ~ A + B (+ C …), data, clamp0 = TRUE, force_factors = TRUE, type = 2, …)
Example:
k3 <- srh.kway(liking ~ gender + condition + age_cat, data = mimicry)
k3
One-factor check (KW-like):
k1 <- srh.kway(liking ~ condition, data = mimicry)
k1
Two factor (Type III SS):
k3_ss3 <- srh.kway(liking ~ gender + condition, data = mimicry, type = 3)
k3_ss3
srh.effsize()
Purpose: 2-way SRH table with effect sizes from
H.
Syntax: srh.effsize(y ~ A + B, data, clamp0 = TRUE,
…)
Example:
e2 <- srh.effsize(liking ~ gender + condition, data = mimicry)
e2
nonpar.datatable()
Purpose: compact descriptive tables (APA-style),
with global rank means, medians, quartiles, IQR.
Syntax: nonpar.datatable(y ~ A + B (+ C …), data,
force_factors = TRUE)
Example:
dt <- nonpar.datatable(liking ~ gender + condition, data = mimicry)
head(dt)
srh.posthoc()
Purpose: Dunn–Bonferroni pairwise comparison
matrix for a specified effect.
Syntax: srh.posthoc(y ~ A (+ B + …), data, method =
“bonferroni”, digits = 3, triangular = c(“lower”,“upper”,“full”),
numeric = FALSE, force_factors = TRUE, sep = “.”)
Example:
ph <- srh.posthoc(liking ~ condition, data = mimicry)
srh.posthocs()
Purpose: Dunn–Bonferroni pairwise matrices
for all effects (main and interactions).
Syntax: srh.posthocs(y ~ A + B (+ C …), data, …)
Example:
phs <- srh.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
names(phs)
phs[["gender:condition"]][1:5, 1:5]
srh.simple.posthoc()
Purpose: Simple-effects post hocs
(pairwise comparisons within levels of conditioning
factors).
Syntax: srh.simple.posthoc(y ~ A + B (+ C …), data,
compare = NULL, scope = c(“within”,“global”), digits = 3)
Example:
simp <- srh.simple.posthoc(liking ~ gender + condition + age_cat, data = mimicry, compare = "gender", scope = "within")
head(simp)
srh.simple.posthocs()
Purpose: enumerate all simple-effect
configurations for a given design.
Syntax: srh.simple.posthocs(y ~ A + B (+ C …),
data)
Example:
sps <- srh.simple.posthocs(liking ~ gender + condition + age_cat, data = mimicry)
head(names(sps), 6)
normality.datatable
Purpose: Shapiro–Wilk normality tests for the raw response within each subgroup for all non-empty combinations of RHS factors (main effects and interaction cells). Syntax: normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)
residuals.normality.datatable
Purpose: Shapiro–Wilk normality tests on residuals from a classical ANOVA model fitted to the selected RHS factors (full factorial for those factors), one test per model (global residuals). Syntax: residuals.normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
residuals.normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)
residuals.cellwise.normality.datatable
Purpose: Shapiro–Wilk tests of residuals from an ANOVA model fitted to the selected RHS factors (full factorial), but tested separately within each cell defined by those factors. Syntax: residuals.cellwise.normality.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
residuals.cellwise.normality.datatable(liking ~ gender + condition + age_cat, data = mimicry)
balance.chisq.datatable
Purpose: Count-balance diagnostics across design factors. Syntax: balance.chisq.datatable(y ~ A + B (+ C …), data, force_factors = TRUE)
Example:
balance.chisq.datatable(liking ~ gender + condition + age_cat, data = mimicry)
levene.plan.datatable
Purpose: Levene/Brown–Forsythe test for homogeneity of variances across the full-plan cells (highest-order interaction of RHS factors). Syntax: levene.plan.datatable(y ~ A + B (+ C …), data, center = “median”, force_factors = TRUE)
Examples:
levene.plan.datatable(liking ~ gender + condition + age_cat, data = mimicry)
levene.plan.datatable(liking ~ gender + condition, data = mimicry, center = "mean")
plan.diagnostics
Purpose: Orchestrates all diagnostics in one call. Syntax: plan.diagnostics(y ~ A + B (+ C …), data, force_factors = TRUE)
Returned list:
$summary: percent_ok, ok_count, total, overall, plus per-type percentages:
percent_ok_normality_raw, percent_ok_residuals_cellwise, percent_ok_balance_chisq, percent_ok_levene_full_plan.
$results: normality_raw, residuals_cellwise_normality, levene_full_plan, balance_chisq.
Examples:
diag_out <- plan.diagnostics(liking ~ gender + condition + age_cat, data = mimicry)
diag_out$results$normality_raw
diag_out$results$residuals_cellwise_normality
diag_out$results$levene_full_plan
diag_out$results$balance_chisq
diag_out$summary
Formula tips and pitfalls
Example:
#coercing
mimicry$gender <- factor(mimicry$gender)
mimicry$condition <- factor(mimicry$condition)
Performance and reproducibility
C:116060334b62-reference.R
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.