The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Extracting Data Epochs and Exporting Pupil Data

eyeris was intentionally designed for intuitive, flexible preprocessing of pupillometry data, with support for event-based epoching and BIDS-style organization for reproducible workflows.

In this vignette, we’ll walk through a typical use case:

  1. loading raw data,
  2. preprocessing it,
  3. extracting trial-based epochs,
  4. and exporting everything in a clean, analysis-ready format.

We’ll also demonstrate a unique feature we designed to maximize both your productivity as well as data quality: interactive HTML reports, which include a record of the steps used to preprocess / epoch any given dataset – and, for epoched data – an interactive “gallery” view to quickly skim through trial-level data from each step of the preprocessing pipeline to make quality control and assurance intuitive and accessible for any dataset (without needing to write any additional code)!

1️⃣ Load and Preprocess Your Data

# Load eyeris
library(eyeris)

# Load the example memory task file and run default glassbox preproc workflow
eye <- system.file("extdata", "memory.asc", package = "eyeris") |>
  glassbox()
#> ✔ [  OK  ] - Running eyeris::load_asc()
#> ✔ [  OK  ] - Running eyeris::deblink()
#> ✔ [  OK  ] - Running eyeris::detransient()
#> ✔ [  OK  ] - Running eyeris::interpolate()
#> ✔ [  OK  ] - Running eyeris::lpfilt()
#> ✔ [  OK  ] - Skipping eyeris::detrend()
#> ✔ [  OK  ] - Running eyeris::zscore()

2️⃣ Extract Data Epochs

epoch() enables flexible extraction of trials using:

Example A: Fixed Time Epochs Around a Matched Event

Extract a 2-second window centered around each “PROBE” event.

eye_1a <- eye |>
  epoch(events = "PROBE*", limits = c(-1, 1))
#> ℹ Epoching pupil data...
#> ℹ Block 1: found 10 matching events for PROBE
#> ✔ Done!
#> ✔ Block 1: pupil data from 10 unique event messages extracted
#> ✔ Pupil epoching completed in 0.13 seconds

Now, if you take a look at eye, you’ll notice there’s a new list element within this eyeris object: epoch_probe.

eye_1a$epoch_probe
#> $block_1
#> # A tibble: 20,000 × 18
#>    block time_orig timebin eye_x eye_y eye      hz type     pupil_raw
#>    <dbl>     <int>   <dbl> <dbl> <dbl> <chr> <dbl> <chr>        <dbl>
#>  1     1  11335474 0        975.  545. R      1000 diameter      6138
#>  2     1  11335475 0.00100  975.  544. R      1000 diameter      6144
#>  3     1  11335476 0.00200  975.  544  R      1000 diameter      6146
#>  4     1  11335477 0.00300  976.  544. R      1000 diameter      6143
#>  5     1  11335478 0.00400  975.  545  R      1000 diameter      6141
#>  6     1  11335479 0.00500  975.  545. R      1000 diameter      6140
#>  7     1  11335480 0.00600  975.  544. R      1000 diameter      6137
#>  8     1  11335481 0.00700  975.  544. R      1000 diameter      6127
#>  9     1  11335482 0.00800  975   545. R      1000 diameter      6119
#> 10     1  11335483 0.00900  975.  546. R      1000 diameter      6113
#> # ℹ 19,990 more rows
#> # ℹ 9 more variables: pupil_raw_deblink <dbl>,
#> #   pupil_raw_deblink_detransient <dbl>,
#> #   pupil_raw_deblink_detransient_interpolate <dbl>,
#> #   pupil_raw_deblink_detransient_interpolate_lpfilt <dbl>,
#> #   pupil_raw_deblink_detransient_interpolate_lpfilt_z <dbl>, template <chr>,
#> #   matching_pattern <chr>, matched_event <chr>, event_message <chr>

By default, the resulting eyeris object will contain the epoched data frame within a list element called epoch_xyz where xyz will be a sanitized version of the original start event string you supplied for the pattern matching procedure.

However, you have the ability to customize this label, by passing a value to the label argument within epoch().

⚠️ Warning: if no label is specified and there are no event message strings provided for sanitization, then you may obtain a strange-looking epoch list element in your output eyeris object (e.g., epoch_, or perhaps even $epoch_nana, etc.). The extracted data epochs should still be accessible here, however, to avoid ambiguous list objects, we highly recommend you explicitly supply sensible epoch labels here within your epoch() calls to be safe.

Example B: Metadata Parsing with Custom Labels

Extract the 1-second window after “PROBE_START” and apply a custom label to the resulting epoch set.

eye_1b <- eye |>
  epoch(
    events = "PROBE_START_{trial}",
    limits = c(0, 1),
    label = "probeAfter"
  )
#> ℹ Epoching pupil data...
#> ℹ Block 1: found 5 matching events for PROBESTARTtrial
#> ✔ Done!
#> ✔ Block 1: pupil data from 5 unique event messages extracted
#> ✔ Pupil epoching completed in 0.03 seconds

eye_1b |>
  purrr::pluck("epoch_probeAfter") |>
  head()
#> $block_1
#> # A tibble: 5,000 × 18
#>    block time_orig timebin eye_x eye_y eye      hz type     pupil_raw
#>    <dbl>     <int>   <dbl> <dbl> <dbl> <chr> <dbl> <chr>        <dbl>
#>  1     1  11336474 0        972.  550. R      1000 diameter      6513
#>  2     1  11336475 0.00100  971.  551. R      1000 diameter      6512
#>  3     1  11336476 0.00200  970.  551. R      1000 diameter      6512
#>  4     1  11336477 0.00300  970.  550. R      1000 diameter      6512
#>  5     1  11336478 0.00400  971.  548. R      1000 diameter      6514
#>  6     1  11336479 0.00501  972.  547. R      1000 diameter      6516
#>  7     1  11336480 0.00601  972.  548. R      1000 diameter      6518
#>  8     1  11336481 0.00701  972.  548. R      1000 diameter      6518
#>  9     1  11336482 0.00801  972.  550. R      1000 diameter      6518
#> 10     1  11336483 0.00901  972.  550. R      1000 diameter      6517
#> # ℹ 4,990 more rows
#> # ℹ 9 more variables: pupil_raw_deblink <dbl>,
#> #   pupil_raw_deblink_detransient <dbl>,
#> #   pupil_raw_deblink_detransient_interpolate <dbl>,
#> #   pupil_raw_deblink_detransient_interpolate_lpfilt <dbl>,
#> #   pupil_raw_deblink_detransient_interpolate_lpfilt_z <dbl>, template <chr>,
#> #   matching_pattern <chr>, matched_event <chr>, trial <chr>

💡 Note: You can customize epoch() with trial-level metadata!

For instance, here, {trial} will not only extract data but also add a trial column parsed from the event string, which originally took the form of PROBE_START_22 (where 22 was the trial number embedded within the event message string we had originally programmed to be sent as event messages at the start of each probe trial on our PsychoPy / EyeLink experiment.

#> # A tibble: 5 × 4
#>   template            matching_pattern    matched_event  trial
#>   <chr>               <chr>               <chr>          <chr>
#> 1 PROBE_START_{trial} ^PROBE_START_(.*?)$ PROBE_START_22 22   
#> 2 PROBE_START_{trial} ^PROBE_START_(.*?)$ PROBE_START_22 22   
#> 3 PROBE_START_{trial} ^PROBE_START_(.*?)$ PROBE_START_22 22   
#> 4 PROBE_START_{trial} ^PROBE_START_(.*?)$ PROBE_START_22 22   
#> 5 PROBE_START_{trial} ^PROBE_START_(.*?)$ PROBE_START_22 22

Example C: Epoch with Subtractive Baselining

Use the 1-second window before "DELAY_STOP" as a baseline and apply it to the epoch data.

eye_1c <- eye |>
  epoch(
    events = "PROBE_START_{trial}",
    limits = c(0, 1),
    label = "probeEpochs",
    calc_baseline = TRUE,
    apply_baseline = TRUE,
    baseline_type = "sub",
    baseline_events = "DELAY_STOP_*",
    baseline_period = c(-1, 0)
  )

In this example, we’re extracting 1-second epochs following each "PROBE_START" event and applying subtractive baseline correction. The baseline is computed from the 1-second window before each corresponding "DELAY_STOP" event.

In other words, this means each pupil trace is normalized by subtracting the average pupil size from the pre-probe delay period (i.e., the baseline period).

Example D: Start/End Event Pair Epoching

Manually define start and end times for two trials:

start_events <- data.frame(
  time = c(11334491, 11338691),
  msg = c("TRIALID 22", "TRIALID 23")
)

end_events <- data.frame(
  time = c(11337158, 11341292),
  msg = c("RESPONSE_22", "RESPONSE_23")
)

eye_1d <- eye |>
  epoch(
    events = list(start_events, end_events, 1), # 1 = block number
    label = "manualTrials"
  )

3️⃣ Export to a BIDS-like Format

Once epoched, your data is ready to be exported with bidsify(), which saves the raw and epoched data in a structured, BIDS-inspired format.

bidsify(
  eyeris = eye_1c,
  bids_dir = "~/Documents/eyeris",
  participant_id = "001",
  session_num = "01",
  task_name = "assocmem",
  run_num = "01",
  save_raw = TRUE, # Also save raw timeseries
  html_report = TRUE # Generate a preprocessing summary
)

Which will create a directory structure like this:

eyeris
└── derivatives
    └── sub-001
        └── ses-01
            ├── eye
            │   ├── sub-001_ses-01_task-assocret_run-01_desc-timeseries_pupil.csv
            │   └── sub-001_ses-01_task-assocret_run-01_epoch-prePostProbe_desc-preproc_pupil.csv
            ├── source
            │   └── figures
            │       └── run-01
            │           ├── epoch_prePostProbe
            │           │   ├── run-01_PROBE_START_22_1.png
            │           │   ├── run-01_PROBE_START_22_2.png
            │           │   ├── run-01_PROBE_START_22_3.png
            │           │   ├── run-01_PROBE_START_22_4.png
            │           │   ├── run-01_PROBE_START_22_5.png
            │           │   ├── run-01_PROBE_START_22_6.png
            │           │   ├── ...
            │           │   ├── run-01_PROBE_STOP_22_1.png
            │           │   ├── run-01_PROBE_STOP_22_2.png
            │           │   ├── run-01_PROBE_STOP_22_3.png
            │           │   ├── run-01_PROBE_STOP_22_4.png
            │           │   ├── run-01_PROBE_STOP_22_5.png
            │           │   ├── run-01_PROBE_STOP_22_6.png
            │           │   ├── ...
            │           ├── run-01_fig-1_desc-histogram.jpg
            │           ├── run-01_fig-1_desc-timeseries.jpg
            ├── sub-001_epoch-prePostProbe_run-01.html
            └── sub-001.html

9 directories, 80 files

💡 Data Previews and QC with Interactive Reports

See the 🔎 QC with Interactive Reports vignette for more details.

✨ Summary

This vignette demonstrated how to:

Check out the function documentation for epoch() and bidsify() to learn more about other customization options that may be useful for your specific workflow.


📚 Citing eyeris

If you use the eyeris package in your research, please cite it!

Run the following in R to get the citation:

citation("eyeris")
#> To cite package 'eyeris' in publications use:
#> 
#>   Schwartz S (2025). _eyeris: Flexible, Extensible, & Reproducible
#>   Processing of Pupil Data_. R package version 1.0.0,
#>   https://github.com/shawntz/eyeris/,
#>   <https://shawnschwartz.com/eyeris/>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Manual{,
#>     title = {eyeris: Flexible, Extensible, & Reproducible Processing of Pupil Data},
#>     author = {Shawn Schwartz},
#>     year = {2025},
#>     note = {R package version 1.0.0, https://github.com/shawntz/eyeris/},
#>     url = {https://shawnschwartz.com/eyeris/},
#>   }

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.