The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Predict

Roland Krasser

2024-11-12

The explore package offers a simplified way to use machine learning and make a prediction.

We use synthetic data in this example

library(dplyr)
library(explore)

train <- create_data_buy(obs = 1000, seed = 1)
glimpse(train)
#> Rows: 1,000
#> Columns: 13
#> $ period          <int> 202012, 202012, 202012, 202012, 202012, 202012, 202012~
#> $ buy             <int> 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, ~
#> $ age             <int> 46, 42, 69, 51, 55, 58, 69, 73, 59, 34, 20, 36, 48, 45~
#> $ city_ind        <int> 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, ~
#> $ female_ind      <int> 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, ~
#> $ fixedvoice_ind  <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
#> $ fixeddata_ind   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
#> $ fixedtv_ind     <int> 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, ~
#> $ mobilevoice_ind <int> 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, ~
#> $ mobiledata_prd  <chr> "NO", "NO", "BUSINESS", "BUSINESS", "BUSINESS", "NO", ~
#> $ bbi_speed_ind   <int> 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, ~
#> $ bbi_usg_gb      <int> 93, 66, 72, 48, 81, 65, 48, 42, 40, 63, 64, 72, 69, 84~
#> $ hh_single       <int> 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ~

Train model

First we create a decision tree model, using buy as target (buy contains only 0 and 1 values)

train %>% explain_tree(target = buy)

We see some clear patterns. Now we create a random forest model (as it is more accurate). To get the model itself, use parameter out = "model"

model <- train %>% explain_forest(target = buy, out = "model")

Predict

Now we create test data and use the model for a prediction. We use a different seed so we get different data.

test <- create_data_buy(obs = 1000, seed = 2)
glimpse(test)
#> Rows: 1,000
#> Columns: 13
#> $ period          <int> 202012, 202012, 202012, 202012, 202012, 202012, 202012~
#> $ buy             <int> 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, ~
#> $ age             <int> 40, 61, 76, 39, 59, 47, 37, 65, 34, 64, 53, 46, 56, 67~
#> $ city_ind        <int> 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, ~
#> $ female_ind      <int> 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, ~
#> $ fixedvoice_ind  <int> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ~
#> $ fixeddata_ind   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
#> $ fixedtv_ind     <int> 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, ~
#> $ mobilevoice_ind <int> 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, ~
#> $ mobiledata_prd  <chr> "BUSINESS", "MOBILE STICK", "NO", "MOBILE STICK", "NO"~
#> $ bbi_speed_ind   <int> 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, ~
#> $ bbi_usg_gb      <int> 77, 68, 8, 63, 49, 75, 66, 45, 82, 55, 45, 53, 49, 53,~
#> $ hh_single       <int> 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, ~
test <- test %>% predict_target(model = model)
glimpse(test)
#> Rows: 1,000
#> Columns: 15
#> $ period          <int> 202012, 202012, 202012, 202012, 202012, 202012, 202012~
#> $ buy             <int> 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, ~
#> $ age             <int> 40, 61, 76, 39, 59, 47, 37, 65, 34, 64, 53, 46, 56, 67~
#> $ city_ind        <int> 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, ~
#> $ female_ind      <int> 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, ~
#> $ fixedvoice_ind  <int> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, ~
#> $ fixeddata_ind   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
#> $ fixedtv_ind     <int> 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, ~
#> $ mobilevoice_ind <int> 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, ~
#> $ mobiledata_prd  <chr> "BUSINESS", "MOBILE STICK", "NO", "MOBILE STICK", "NO"~
#> $ bbi_speed_ind   <int> 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, ~
#> $ bbi_usg_gb      <int> 77, 68, 8, 63, 49, 75, 66, 45, 82, 55, 45, 53, 49, 53,~
#> $ hh_single       <int> 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, ~
#> $ prediction_0    <dbl> 0.06, 0.40, 1.00, 0.00, 0.74, 0.40, 0.04, 1.00, 0.00, ~
#> $ prediction_1    <dbl> 0.94, 0.60, 0.00, 1.00, 0.26, 0.60, 0.96, 0.00, 1.00, ~

Now we got 2 new variables prediction_0 (the probability of buy == 0) and prediction_1 (the probability of buy == 1). We can check the predictions by comparing prediction_1 with real values of buy.

test %>% explore(prediction_1, target = buy)

There is a clear difference between buy == 0 and buy == 1. So the prediction works.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.