The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Explain

Roland Krasser

2024-11-12

The explore package offers a simplified way to use machine learning to understand and explain patterns in the data.

We use synthetic data in this example

library(dplyr)
library(explore)

data <- create_data_buy(obs = 1000)
glimpse(data)
#> Rows: 1,000
#> Columns: 13
#> $ period          <int> 202012, 202012, 202012, 202012, 202012, 202012, 202012~
#> $ buy             <int> 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, ~
#> $ age             <int> 39, 57, 55, 66, 71, 44, 64, 51, 70, 44, 58, 47, 68, 71~
#> $ city_ind        <int> 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, ~
#> $ female_ind      <int> 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, ~
#> $ fixedvoice_ind  <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ~
#> $ fixeddata_ind   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
#> $ fixedtv_ind     <int> 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, ~
#> $ mobilevoice_ind <int> 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, ~
#> $ mobiledata_prd  <chr> "NO", "NO", "MOBILE STICK", "NO", "BUSINESS", "BUSINES~
#> $ bbi_speed_ind   <int> 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, ~
#> $ bbi_usg_gb      <int> 77, 49, 53, 44, 55, 93, 50, 64, 63, 87, 45, 45, 70, 79~
#> $ hh_single       <int> 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, ~

Explain / Model

Decision Tree

data %>% explain_tree(target = buy)

data %>% explain_tree(target = mobiledata_prd)

data %>% explain_tree(target = age)

Random Forest

data %>% explain_forest(target = buy, ntree = 100)

To get the model itself as output you can use the parameter out = "model or out = all to get all (feature importance as plot and table, trained model). To use the model for a prediction, you can use predict_target()

XGBoost

As XGBoost only accepts numeric variables, we use drop_var_not_numeric() to drop mobile_data_prd as it is not a numeric variable. An alternative would be to convert the non numeric variables into numeric.

data %>%
  drop_var_not_numeric() |> 
  explain_xgboost(target = buy)

Use parameter out = "all" to get more details about the training

train <- data %>%
  drop_var_not_numeric() |> 
  explain_xgboost(target = buy, out = "all")
train$importance
#>           variable        gain       cover  frequency  importance
#> 1:             age 0.438876303 0.269718075 0.22916667 0.438876303
#> 2:      bbi_usg_gb 0.273748162 0.309418667 0.31250000 0.273748162
#> 3:      female_ind 0.148257513 0.145936389 0.13095238 0.148257513
#> 4:     fixedtv_ind 0.087929669 0.126867898 0.12500000 0.087929669
#> 5:   bbi_speed_ind 0.022082801 0.057552002 0.07440476 0.022082801
#> 6:        city_ind 0.018582322 0.064343469 0.06845238 0.018582322
#> 7:       hh_single 0.005310378 0.010887744 0.02083333 0.005310378
#> 8:  fixedvoice_ind 0.003014395 0.008814722 0.02083333 0.003014395
#> 9: mobilevoice_ind 0.002198457 0.006461034 0.01785714 0.002198457
train$tune_plot

train$tune_data
#>    model_nr  eta max_depth runtime iter train_auc_mean test_auc_mean
#> 1:        1 0.30         3  0 mins   21      0.9599662     0.9259773
#> 2:        2 0.10         3  0 mins   52      0.9572578     0.9271735
#> 3:        3 0.01         3  0 mins  551      0.9592901     0.9268295
#> 4:        4 0.30         5  0 mins   13      0.9762086     0.9212647
#> 5:        5 0.10         5  0 mins   38      0.9773647     0.9258133
#> 6:        6 0.01         5  0 mins   71      0.9601223     0.9256453

To use the model for a prediction, you can use predict_target()

Logistic Regression

data %>% explain_logreg(target = buy)
#> # A tibble: 6 x 5
#>   term          estimate std.error statistic  p.value
#>   <chr>            <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  5.87      0.544        10.8   3.88e-27
#> 2 age         -0.146     0.0106      -13.8   3.49e-43
#> 3 city_ind     0.711     0.183         3.89  1.02e- 4
#> 4 female_ind   1.75      0.186         9.38  6.91e-21
#> 5 fixedtv_ind  1.51      0.190         7.93  2.14e-15
#> 6 bbi_usg_gb  -0.0000724 0.0000904    -0.801 4.23e- 1

Balance Target

If you have a data set with a very unbalanced target (in this case only 5% of all observations have buy == 1) it may be difficult to create a decision tree.

data <- create_data_buy(obs = 2000, target1_prob = 0.05)
data %>% describe(buy)
#> variable = buy
#> type     = integer
#> na       = 0 of 2 000 (0%)
#> unique   = 2
#>        0 = 1 899 (95%)
#>        1 = 101 (5.1%)

It may help to balance the target before growing the decision tree (or use weighs as alternative). In this example we down sample the data so buy has 10% of target == 1.

data %>%
  balance_target(target = buy, min_prop = 0.10) %>%
  explain_tree(target = buy)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.