The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(eventglm)
<- cumincglm(Surv(time, status) ~ rx, time = 2500, data = colon)
colon.cifit summary(colon.cifit)
#>
#> Call:
#> cumincglm(formula = Surv(time, status) ~ rx, time = 2500, data = colon)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -0.5875 -0.4902 -0.3467 0.4863 2.1103
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.54345 0.02946 18.449 < 2e-16 ***
#> rxLev -0.02907 0.04173 -0.697 0.48596
#> rxLev+5FU -0.13176 0.04186 -3.148 0.00165 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for quasi family taken to be 1)
#>
#> Null deviance: 253.10 on 928 degrees of freedom
#> Residual deviance: 250.15 on 926 degrees of freedom
#> AIC: NA
#>
#> Number of Fisher Scoring iterations: 2
confint(colon.cifit)
#> 2.5 % 97.5 %
#> (Intercept) 0.4857153 0.60118745
#> rxLev -0.1108637 0.05271372
#> rxLev+5FU -0.2137964 -0.04971921
This uses the st0202_1
package, available from here: https://www.stata-journal.com/article.html?article=st0202_1
"colon.csv", clear
. import delimited obs)
(18 vars, 929
. stset time, failure(status==1)
.
failure event: status == 1obs. time interval: (0, time]
exit on or before: failure
------------------------------------------------------------------------------total observations
929
0 exclusions
------------------------------------------------------------------------------
929 observations remaining, representingin single-record/single-failure data
452 failures total analysis time at risk and under observation
1,551,389 at risk from t = 0
earliest observed entry t = 0last observed exit t = 3,329
. // requires st0202_1 install (search stpci)
. at(2500)
. stpci, for the cumulative incidence function.
Pseudo-observations none).
Competing risks: (percent completed).
Computing pseudo-observations (progress dots indicate
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100variable: pseudo.
Generated
tabulate rx, gen(rxdum)
.
rx | Freq. Percent Cum.
------------+-----------------------------------
Lev | 310 33.37 33.37
Lev+5FU | 304 32.72 66.09
Obs | 315 33.91 100.00
------------+-----------------------------------
Total | 929 100.00
glm pseudo rxdum1 rxdum2, vce(robust)
.
log pseudolikelihood = -708.7556
Iteration 0:
of obs = 929
Generalized linear models Number
Optimization : ML Residual df = 926
Scale parameter = .270145
Deviance = 250.154308 (1/df) Deviance = .270145
Pearson = 250.154308 (1/df) Pearson = .270145
function: V(u) = 1 [Gaussian]
Variance function : g(u) = u [Identity]
Link
AIC = 1.532305
Log pseudolikelihood = -708.7556003 BIC = -6078.23
------------------------------------------------------------------------------
| Robust
pseudo | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
rxdum1 | -.029075 .0416186 -0.70 0.485 -.1106459 .0524959
rxdum2 | -.1317578 .0417443 -3.16 0.002 -.2135752 -.0499404_cons | .5434514 .02938 18.50 0.000 .4858676 .6010352
------------------------------------------------------------------------------
Assuming you have loaded the colon data in your workspace.
proc lifetest data=colon noprint plots=none timelist=2500 reduceout outsurv=sall;
time time*status(0);
run;
data sall;
set sall;
theta = survival;
keep theta;
run;
data sout;
set colon;
keep id;
run;
%macro pseudosurv;
%do ip=1 %to 929;
data coloni;
set colon;
where id ^= &ip;
run;
proc lifetest data=coloni noprint plots=none timelist=2500 reduceout outsurv=salli;
time time*status(0);
run;
data salli;
set salli;
thetamini = survival;
id = &ip;
keep id thetamini;
run;
data souti;
merge salli sall;
run;
data sout;
merge sout souti;
by id;
run;
%end;
%mend pseudosurv;
%pseudosurv;
data sout2;
set sout;
pseudoci = 1 - (929 * theta - (929 - 1) * thetamini);
run;
data colon2;
merge colon sout2;
by id;
if rx='Lev' then rxlev = 1;
else rxlev = 0;
if rx='Lev+5FU' then rxlevplus = 1;
else rxlevplus = 0;
run;
proc reg data = colon2;
model pseudoci = rxlev rxlevplus / white;
run;
Parameter Estimates | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | DF |
Parameter Estimate |
Standard Error |
t Value | Pr > |t| | Heteroscedasticity Consistent | ||
Standard Error |
t Value | Pr > |t| | ||||||
Intercept | 1 | 0.54345 | 0.02928 | 18.56 | <.0001 | 0.02936 | 18.51 | <.0001 |
rxlev | 1 | -0.02907 | 0.04158 | -0.70 | 0.4846 | 0.04160 | -0.70 | 0.4847 |
rxlevplus | 1 | -0.13176 | 0.04179 | -3.15 | 0.0017 | 0.04172 | -3.16 | 0.0016 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.