The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

paper_alg1

Algorithm 1 Estimating and Evaluating an Individualized Treatment Rule (ITR) using the Same Experimental Data via Cross-Validation

Steps in Algorithm 1 Function/object Output
1. Split data into \(K\) random subsets of equal size \(\left(\mathbf{Z}_1, \cdots, \mathbf{Z}_k\right)\) caret::createFolds() within estimate_itr() dataframe
2. k \(\leftarrow\) 1
3. while \(k \leq K\) do for loop in fit_itr() within estimate_itr()
4. \(\quad \mathbf{Z}_{-k}=\left[\mathbf{Z}_1, \cdots, \mathbf{Z}_{k-1}, \mathbf{Z}_{k+1}, \cdots, \mathbf{Z}_K\right]\) trainset object training data
5. \(\hat{f}_{-k}=F\left(\mathbf{Z}_{-k}\right)\) modulized functions for each ML algoritms (e.g., run_causal_forest()) within estimate_itr() ITR (binary vector)
6. \(\hat{\tau}_k=\hat{\tau}_{\hat{f}_{-k}}\left(\mathbf{Z}_k\right)\) compute_qoi() function within evaluate_itr() metrics for fold \(k\)
7. \(k \leftarrow k+1\)
8. end while
9.return \(\hat{\tau}_F=\frac{1}{K} \sum_{k=1}^K \hat{\tau}_k\), \(\widehat{\mathbb{V}\left(\hat{\tau}_F\right)}=v\left(\hat{f}_{-1}, \cdots, \hat{f}_{-k}, \mathbf{Z}_1, \cdots, \mathbf{Z}_K\right)\) PAPEcv() PAPDcv() and getAupecOutput() functions inside compute_qoi() function within evaluate_itr() averaging the results across folds

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.