The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

estimateW

This is the development repository of the R package estimateW.

Features

The package provides methods to estimate spatial weight matrices in spatial autoregressive type models.

Installation

Type into your R session:

if (!require("remotes")) {
  install.packages("remotes")
}
remotes::install_github(
  repo = "https://github.com/tkrisztin/estimateW")

Demonstration

# Load the package
library(estimateW)
require(dplyr)

tt = length(unique(covid$date))
n = length(unique(covid$ISO3))

# reorder by date and longitude
covid = covid %>% 
  arrange(date, LON) %>%
  mutate(date = as.factor(date))
  
# Benchmark specification from Krisztin and Piribauer (2022) SEA
Y = as.matrix(covid$infections_pc - covid$infections_pc_lag)
X = model.matrix(~infections_pc_lag + stringency_2weekly + 
                   precipProbability + temperatureMax + ISO3 + as.factor(date) + 0,data = covid)

# use a flat prior for W
flat_W_prior = W_priors(n = n,nr_neighbors_prior = rep(1/n,n))

# Estimate a Bayesian model using covid infections data
res = sarw(Y = Y,tt = tt,Z = X,niter = 200,nretain = 50,
           W_prior = flat_W_prior)
           
# Plot the posterior of the spatial weight matrix
dimnames(res$postw)[[2]] = dimnames(res$postw)[[1]] = covid$ISO3[1:n]
plot(res,font=3,cex.axis=0.75,las=2)

References

Tamás Krisztin & Philipp Piribauer (2022) A Bayesian approach for the estimation of weight matrices in spatial autoregressive models, Spatial Economic Analysis, DOI: 10.1080/17421772.2022.2095426

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.