The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The primary goal of ervissexplore is to make it easy to
retrieve and filter ERVISS data. The plotting functions
are provided as a convenience for quick exploration, not as a
full-featured visualization framework.
Since the data is returned as a standard data.table, you
are free to build any visualization you want using ggplot2
or any other plotting library.
Each data source has a dedicated plot_*() function and a
quick_plot_*() shortcut.
The quick_plot_*() functions combine data fetching and
plotting in a single call:
# One-liner for ILI rates
quick_plot_ili_ari_rates(
date_min = as.Date("2024-01-01"),
date_max = as.Date("2024-12-31"),
indicator = "ILIconsultationrate",
countries = c("France"),
date_breaks = "1 month"
)You can also use the generic
quick_plot_erviss_data():
plot_erviss_data()The generic function dispatches to the right plot function based on
the type parameter:
All plot_*() functions return standard
ggplot2 objects. You can modify them freely with any
ggplot2 function.
data <- get_sentineltests_positivity(
date_min = as.Date("2024-01-01"),
date_max = as.Date("2024-06-30"),
pathogen = "SARS-CoV-2",
countries = c("France", "Germany")
)
plot_erviss_positivity(data) +
theme_bw() +
theme(
legend.position = "top",
strip.background = element_rect(fill = "steelblue"),
strip.text = element_text(color = "white", face = "bold")
)Since the data is a data.table, you can bypass the
built-in plot functions entirely and create exactly the visualization
you need:
data <- get_nonsentinel_severity(
date_min = as.Date("2024-01-01"),
date_max = as.Date("2024-12-31"),
pathogen = "SARS-CoV-2",
indicator = c("hospitaladmissions", "ICUadmissions"),
age = "total",
countries = c("France", "Spain")
)
ggplot(data, aes(x = date, y = value, fill = indicator)) +
geom_col(position = "dodge") +
facet_wrap(~countryname, scales = "free_y") +
scale_fill_manual(
values = c("hospitaladmissions" = "#E69F00", "ICUadmissions" = "#D55E00"),
labels = c("Hospital admissions", "ICU admissions"),
name = ""
) +
labs(
title = "SARS-CoV-2 severity indicators",
x = NULL,
y = "Count",
caption = "Source: ERVISS / EU-ECDC"
) +
theme_minimal() +
theme(legend.position = "top")data <- get_ili_ari_rates(
date_min = as.Date("2024-01-01"),
date_max = as.Date("2024-12-31"),
indicator = "ILIconsultationrate",
age = "total",
countries = c("Spain", "Austria", "Greece")
)
ggplot(data, aes(x = date, y = countryname, fill = value)) +
geom_tile() +
scale_fill_viridis_c(name = "ILI rate") +
scale_x_date(date_breaks = "1 month", date_labels = "%b") +
labs(title = "ILI consultation rates across Europe", x = NULL, y = NULL) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.