The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

00 epiflows: package overview

2023-04-08

epiflows is a package for predicting and visualising spread of infectious diseases based on flows between geographical locations, e.g., countries. epiflows provides functions for calculating spread estimates, handling flow data, and visualization.

Installing the package

Currently, epiflows is a work in progress and can be installed from github using the remotes, ghit, or devtools package:

if (!require("remotes")) install.packages("remotes", repos = "https://cloud.rstudio.org")
remotes::install_github("reconhub/epiflows")

What does it do?

The main features of the package include:

Estimation of risk

Example

Estimating the number of new cases flowing to other countries from Espirito Santo, Brazil (Dorigatti et al., 2017).

library("epiflows")
library("ggplot2")
data("Brazil_epiflows")
print(Brazil_epiflows)
## 
## /// Epidemiological Flows //
## 
##   // class: epiflows, epicontacts
##   // 15 locations; 100 flows; directed
##   // optional variables: pop_size, duration_stay, num_cases, first_date, last_date 
## 
##   // locations
## 
## # A tibble: 15 × 6
##    id                 location_population num_cases_time_window first_date_cases
##    <chr>                            <dbl>                 <dbl> <fct>           
##  1 Espirito Santo                 3973697                  2600 2017-01-04      
##  2 Minas Gerais                  20997560                  4870 2016-12-19      
##  3 Rio de Janeiro                16635996                   170 2017-02-19      
##  4 Sao Paulo                     44749699                   200 2016-12-17      
##  5 Southeast Brazil              86356952                  7840 2016-12-17      
##  6 Argentina                           NA                    NA <NA>            
##  7 Chile                               NA                    NA <NA>            
##  8 Germany                             NA                    NA <NA>            
##  9 Italy                               NA                    NA <NA>            
## 10 Paraguay                            NA                    NA <NA>            
## 11 Portugal                            NA                    NA <NA>            
## 12 Spain                               NA                    NA <NA>            
## 13 United Kingdom                      NA                    NA <NA>            
## 14 United States of …                  NA                    NA <NA>            
## 15 Uruguay                             NA                    NA <NA>            
## # ℹ 2 more variables: last_date_cases <fct>, length_of_stay <dbl>
## 
##   // flows
## 
## # A tibble: 100 × 3
##    from             to         n
##    <chr>            <chr>  <dbl>
##  1 Espirito Santo   Italy  2828.
##  2 Minas Gerais     Italy 15714.
##  3 Rio de Janeiro   Italy  8164.
##  4 Sao Paulo        Italy 34039.
##  5 Southeast Brazil Italy 76282.
##  6 Espirito Santo   Spain  3270.
##  7 Minas Gerais     Spain 18176.
##  8 Rio de Janeiro   Spain  9443.
##  9 Sao Paulo        Spain 39371.
## 10 Southeast Brazil Spain 88231.
## # ℹ 90 more rows
set.seed(2018-07-25)
res <- estimate_risk_spread(Brazil_epiflows, 
                            location_code = "Espirito Santo",
                            r_incubation = function(n) rlnorm(n, 1.46, 0.35),
                            r_infectious = function(n) rnorm(n, 4.5, 1.5/1.96),
                            n_sim = 1e5
                           )
## Exportations done
## Importations done
res
##                          mean_cases lower_limit_95CI upper_limit_95CI
## Italy                     0.2233656        0.1520966        0.3078136
## Spain                     0.2255171        0.1537452        0.3126801
## Portugal                  0.2317019        0.1565528        0.3383112
## Germany                   0.1864162        0.1259548        0.2721890
## United Kingdom            0.1613418        0.1195261        0.2089475
## United States of America  0.9253419        0.6252207        1.3511047
## Argentina                 1.1283506        0.7623865        1.6475205
## Chile                     0.2648277        0.1789370        0.3866836
## Uruguay                   0.2408942        0.1627681        0.3517426
## Paraguay                  0.1619724        0.1213114        0.1926966
res$location <- rownames(res)
ggplot(res, aes(x = mean_cases, y = location)) +
  geom_point(size = 2) +
  geom_errorbarh(aes(xmin = lower_limit_95CI, xmax = upper_limit_95CI), height = .25) +
  theme_bw(base_size = 12, base_family = "Helvetica") +
  ggtitle("Yellow Fever Spread from Espirito Santo, Brazil") +
  xlab("Number of cases") +
  xlim(c(0, NA))

Data structure to store flows and metadata

The easiest way to create an epiflows object is from two data frames (type vignette("epiflows-class") for more details:

data("YF_locations")
data("YF_flows")
data("YF_coordinates")
loc <- merge(x = YF_locations, 
             y = YF_coordinates,
             by.x = "location_code",
             by.y = "id",
             sort = FALSE)
loc
##               location_code location_population num_cases_time_window
## 1            Espirito Santo             3973697                  2600
## 2              Minas Gerais            20997560                  4870
## 3            Rio de Janeiro            16635996                   170
## 4                 Sao Paulo            44749699                   200
## 5          Southeast Brazil            86356952                  7840
## 6                 Argentina                  NA                    NA
## 7                     Chile                  NA                    NA
## 8                   Germany                  NA                    NA
## 9                     Italy                  NA                    NA
## 10                 Paraguay                  NA                    NA
## 11                 Portugal                  NA                    NA
## 12                    Spain                  NA                    NA
## 13           United Kingdom                  NA                    NA
## 14 United States of America                  NA                    NA
## 15                  Uruguay                  NA                    NA
##    first_date_cases last_date_cases length_of_stay        lon       lat
## 1        2017-01-04      2017-04-30             NA -40.308863 -19.18342
## 2        2016-12-19      2017-04-20             NA -44.555031 -18.51218
## 3        2017-02-19      2017-05-10             NA -43.172897 -22.90685
## 4        2016-12-17      2017-04-20             NA -46.633309 -23.55052
## 5        2016-12-17      2017-05-10             NA -46.209155 -20.33318
## 6              <NA>            <NA>           10.9 -63.616672 -38.41610
## 7              <NA>            <NA>           10.3 -71.542969 -35.67515
## 8              <NA>            <NA>           22.3  10.451526  51.16569
## 9              <NA>            <NA>           30.1  12.567380  41.87194
## 10             <NA>            <NA>            7.3 -58.443832 -23.44250
## 11             <NA>            <NA>           27.2  -8.224454  39.39987
## 12             <NA>            <NA>           27.2  -3.749220  40.46367
## 13             <NA>            <NA>           19.5  -3.435973  55.37805
## 14             <NA>            <NA>           18.5 -95.712891  37.09024
## 15             <NA>            <NA>            8.0 -55.765835 -32.52278
ef <- make_epiflows(flows         = YF_flows, 
                    locations     = loc, 
                    coordinates   = c("lon", "lat"), 
                    pop_size      = "location_population",
                    duration_stay = "length_of_stay",
                    num_cases     = "num_cases_time_window",
                    first_date    = "first_date_cases",
                    last_date     = "last_date_cases"
                   )
ef
## 
## /// Epidemiological Flows //
## 
##   // class: epiflows, epicontacts
##   // 15 locations; 100 flows; directed
##   // optional variables: coordinates, pop_size, duration_stay, num_cases, first_date, last_date 
## 
##   // locations
## 
## # A tibble: 15 × 8
##    id                 location_population num_cases_time_window first_date_cases
##    <chr>                            <dbl>                 <dbl> <fct>           
##  1 Espirito Santo                 3973697                  2600 2017-01-04      
##  2 Minas Gerais                  20997560                  4870 2016-12-19      
##  3 Rio de Janeiro                16635996                   170 2017-02-19      
##  4 Sao Paulo                     44749699                   200 2016-12-17      
##  5 Southeast Brazil              86356952                  7840 2016-12-17      
##  6 Argentina                           NA                    NA <NA>            
##  7 Chile                               NA                    NA <NA>            
##  8 Germany                             NA                    NA <NA>            
##  9 Italy                               NA                    NA <NA>            
## 10 Paraguay                            NA                    NA <NA>            
## 11 Portugal                            NA                    NA <NA>            
## 12 Spain                               NA                    NA <NA>            
## 13 United Kingdom                      NA                    NA <NA>            
## 14 United States of …                  NA                    NA <NA>            
## 15 Uruguay                             NA                    NA <NA>            
## # ℹ 4 more variables: last_date_cases <fct>, length_of_stay <dbl>, lon <dbl>,
## #   lat <dbl>
## 
##   // flows
## 
## # A tibble: 100 × 3
##    from             to         n
##    <chr>            <chr>  <dbl>
##  1 Espirito Santo   Italy  2828.
##  2 Minas Gerais     Italy 15714.
##  3 Rio de Janeiro   Italy  8164.
##  4 Sao Paulo        Italy 34039.
##  5 Southeast Brazil Italy 76282.
##  6 Espirito Santo   Spain  3270.
##  7 Minas Gerais     Spain 18176.
##  8 Rio de Janeiro   Spain  9443.
##  9 Sao Paulo        Spain 39371.
## 10 Southeast Brazil Spain 88231.
## # ℹ 90 more rows

Basic methods

Plotting

You can use plot() to plot flows from an epiflows object on one of:

vis_epiflows(ef)
map_epiflows(ef)
grid_epiflows(ef)
## Warning: The `guide` argument in `scale_*()` cannot be `FALSE`. This was deprecated in
## ggplot2 3.3.4.
## ℹ Please use "none" instead.
## ℹ The deprecated feature was likely used in the epiflows package.
##   Please report the issue at <https://github.com/reconhub/epiflows/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

Accessors

References

Dorigatti I, Hamlet A, Aguas R, Cattarino L, Cori A, Donnelly CA, Garske T, Imai N, Ferguson NM. International risk of yellow fever spread from the ongoing outbreak in Brazil, December 2016 to May 2017. Euro Surveill. 2017;22(28):pii=30572. DOI: 10.2807/1560-7917.ES.2017.22.28.30572

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.