The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

envoutliers: Methods for Identification of Outliers in Environmental Data

Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <doi:10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <doi:10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>).

Version: 1.1.0
Imports: MASS, car, changepoint, ecp, graphics, ismev, lokern, robustbase, stats
Suggests: openair
Published: 2020-05-07
DOI: 10.32614/CRAN.package.envoutliers
Author: Martina Campulova [cre], Martina Campulova [aut], Roman Campula [ctb]
Maintainer: Martina Campulova <martina.campulova at mendelu.cz>
License: GPL-2
NeedsCompilation: no
Citation: envoutliers citation info
Materials: NEWS
CRAN checks: envoutliers results

Documentation:

Reference manual: envoutliers.pdf

Downloads:

Package source: envoutliers_1.1.0.tar.gz
Windows binaries: r-devel: envoutliers_1.1.0.zip, r-release: envoutliers_1.1.0.zip, r-oldrel: envoutliers_1.1.0.zip
macOS binaries: r-release (arm64): envoutliers_1.1.0.tgz, r-oldrel (arm64): envoutliers_1.1.0.tgz, r-release (x86_64): envoutliers_1.1.0.tgz, r-oldrel (x86_64): envoutliers_1.1.0.tgz
Old sources: envoutliers archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=envoutliers to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.