The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Emery is a package for estimating accuracy statistics for multiple measurement methods in the absence of a gold standard. It supports sets of methods which are binary, ordinal, or continuous.
The generate_multimethod_data()
function can be used to
simulate the results from paired measurements of a set of objects.
ex_bin_data <-
generate_multimethod_data(
type = "binary",
n_method = 3,
n_obs = 200,
se = c(0.85, 0.90, 0.95),
sp = c(0.95, 0.90, 0.85),
method_names = c("alpha", "beta", "gamma")
)
ex_bin_data$generated_data[98:103, ]
#> alpha beta gamma
#> obs098 1 1 1
#> obs099 1 1 1
#> obs100 0 1 0
#> obs101 0 1 0
#> obs102 0 0 0
#> obs103 0 0 0
The resulting list contains the simulated data as well as the parameters used to generate it. If method, observation, or level (ordinal only) names are not provided, default names will be applied
Estimating the accuracy statistics of each method is as simple as
calling the estimate_ML()
function on the data set. The
function expects the data to be a matrix of results with each row
representing an observation and each column representing a method.
Starting values for the EM algorithm can be provided through the
init
argument, but these are not required.
ex_bin <-
estimate_ML(
type = "binary",
data = ex_bin_data$generated_data,
init = list(prev_1 = 0.8, se_1 = c(0.7, 0.8, 0.75), sp_1 = c(0.85, 0.95, 0.75))
)
ex_bin
#> $prev_est
#> [1] 0.5151903
#>
#> $se_est
#> alpha beta gamma
#> [1,] 0.8593233 0.9334435 0.9675317
#>
#> $sp_est
#> alpha beta gamma
#> [1,] 0.9643469 0.8987253 0.9040096
The result of this function is an S4 object of the class
MultiMethodMLEstimate. Basic plots illustrating the estimation process
can be created by calling the standard plot()
function on
the object.
#>
#> $se
#>
#> $sp
#>
#> $qk
#>
#> $qk_hist
#>
#> $se_sp
If the true population parameters are known, as is the case with simulated data, these can be provided to the plot function to enhance the information provided.
#>
#> $se
#>
#> $sp
#>
#> $qk
#>
#> $qk_hist
#>
#> $se_sp
The process for working with ordinal or continuous data is similar to above, though the inputs tend to be more complex.
To simulate ordinal data, we must supply the probability mass functions (pmf) associated with the method’s levels for the “positive” and “negative” observations. It is assumed that “positive” observations correspond to higher levels.
An example pmf for detecting “positive” observations for 3 methods with 5 levels may look something like this.
pmf_pos_ex <-
matrix(
c(
c(0.05, 0.10, 0.15, 0.30, 0.40),
c(0.00, 0.05, 0.20, 0.25, 0.50),
c(0.10, 0.15, 0.20, 0.25, 0.30)
),
nrow = 3,
byrow = TRUE
)
pmf_pos_ex
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.05 0.10 0.15 0.30 0.4
#> [2,] 0.00 0.05 0.20 0.25 0.5
#> [3,] 0.10 0.15 0.20 0.25 0.3
We’ll assume the pmf for negative observations is just the reverse of this for simplicity here.
ex_ord_data <-
generate_multimethod_data(
type = "ordinal",
n_method = 3,
n_obs = 200,
pmf_pos = pmf_pos_ex,
pmf_neg = pmf_neg_ex,
method_names = c("alice", "bob", "carrie"),
level_names = c("strongly dislike", "dislike", "neutral", "like", "strongly like")
)
ex_ord_data$generated_data[98:103, ]
#> alice bob carrie
#> obs098 5 4 5
#> obs099 5 5 4
#> obs100 5 3 4
#> obs101 1 4 1
#> obs102 1 4 2
#> obs103 2 1 3
ex_ord <-
estimate_ML(
type = "ordinal",
data = ex_ord_data$generated_data,
level_names = ex_ord_data$params$level_names
)
ex_ord
#> $prev_est
#> [1] 0.5556177
#>
#> $A_i_est
#> alice bob carrie
#> 0.8083350 0.8802505 0.7311353
#>
#> $phi_1ij_est
#> alice bob carrie
#> strongly dislike 0.14001062 0.04838996 0.1002693
#> dislike 0.11604592 0.08533310 0.1611551
#> neutral 0.07061599 0.16554176 0.1535458
#> like 0.26837274 0.26996982 0.2612555
#> strongly like 0.40495473 0.43076536 0.3237743
#>
#> $phi_0ij_est
#> alice bob carrie
#> strongly dislike 3.875213e-01 4.458181e-01 0.29093999
#> dislike 3.162206e-01 2.983634e-01 0.27107143
#> neutral 2.042487e-01 2.093289e-01 0.25808238
#> like 9.200943e-02 1.419722e-19 0.11215985
#> strongly like 4.760496e-26 4.648961e-02 0.06774635
#>
#> $q_k1
#>
#> $q_k0
#>
#> $q_k1_hist
#>
#> $phi_d
Unlike binary and ordinal methods which require 3 or more methods to create estimates, continuous method estimates can be produced with data from just 2.
ex_con_data <-
generate_multimethod_data(
type = "continuous",
n_method = 3,
n_obs = 200,
method_names = c("phi", "kappa", "sigma")
)
ex_con_data$generated_data[98:103, ]
#> phi kappa sigma
#> obs098 12.380241 10.561615 12.149463
#> obs099 13.651226 12.954333 11.037958
#> obs100 12.083743 11.316475 9.652041
#> obs101 8.830481 10.704309 8.865215
#> obs102 9.420454 8.686352 9.200257
#> obs103 10.946638 10.826431 9.480511
Estimating the accuracy parameters is the same as above.
ex_con <-
estimate_ML(
type = "continuous",
data = ex_con_data$generated_data
)
ex_con
#> $prev_est
#> [1] 0.5273173
#>
#> $mu_i1_est
#> phi kappa sigma
#> 12.06691 11.87176 11.67503
#>
#> $sigma_i1_est
#> phi kappa sigma
#> phi 1.009875689 -0.002860623 -0.02656859
#> kappa -0.002860623 1.094208542 0.19605713
#> sigma -0.026568593 0.196057127 1.05248522
#>
#> $mu_i0_est
#> phi kappa sigma
#> 9.818314 9.972865 10.026923
#>
#> $sigma_i0_est
#> phi kappa sigma
#> phi 0.7918941636 -0.0001959635 -0.07475076
#> kappa -0.0001959635 0.8502503472 -0.11328714
#> sigma -0.0747507641 -0.1132871374 0.97445652
#>
#> $eta_j_est
#> phi kappa sigma
#> 1.675181 1.361760 1.157620
#>
#> $A_j_est
#> phi kappa sigma
#> 0.9530507 0.9133631 0.8764904
#>
#> $z_k1
#>
#> $z_k0
#>
#> $z_k1_hist
Confidence intervals for all accuracy statistics can be estimated by
bootstrap. The boot_ML()
function is a handy tool for
generating bootstrapped estimates.
ex_boot_bin <- boot_ML(
type = "binary",
data = ex_bin_data$generated_data,
n_boot = 20
)
# print the estimates of sensitivity from the complete data set
ex_boot_bin$v_0@results$se_est
#> alpha beta gamma
#> [1,] 0.8593234 0.9334436 0.9675318
# print the first 3 bootstrap estimates of sensitivity
ex_boot_bin$v_star[[1]]$se_est
#> alpha beta gamma
#> [1,] 0.84491 0.9208472 0.9649755
ex_boot_bin$v_star[[2]]$se_est
#> alpha beta gamma
#> [1,] 0.8078001 0.9574307 0.9812427
ex_boot_bin$v_star[[3]]$se_est
#> alpha beta gamma
#> [1,] 0.8273965 0.9239061 0.9248651
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.