The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
A worked example follows to serve as motivation for the use case.
TODO
elt <- create_elt(raw_elt, ann_rate="rate", mu="mean", sdev_i = "sdevi" , sdev_c = "sdevc", expval = "exp")
elt
#> id rate mean sdevi sdevc exp mdr sdev cov alpha
#> 1: 1 0.10 500 500 200 100000 0.0050000 700 1.40 0.502653061
#> 2: 2 0.10 200 400 100 5000 0.0400000 500 2.50 0.113600000
#> 3: 3 0.20 300 200 400 40000 0.0075000 600 2.00 0.240625000
#> 4: 4 0.10 100 300 500 4000 0.0250000 800 8.00 -0.009765625
#> 5: 5 0.20 500 100 200 2000 0.2500000 300 0.60 1.833333333
#> 6: 6 0.25 200 200 500 50000 0.0040000 700 3.50 0.077306122
#> 7: 7 0.01 1000 500 600 100000 0.0100000 1100 1.10 0.808181818
#> 8: 8 0.12 250 300 100 5000 0.0500000 400 1.60 0.321093750
#> 9: 9 0.14 1000 500 200 6000 0.1666667 700 0.70 1.534013605
#> 10: 10 0.00 10000 1000 500 1000000 0.0100000 1500 0.15 43.990000000
#> beta random_num
#> 1: 100.0279592 0.081967213
#> 2: 2.7264000 0.081967213
#> 3: 31.8427083 0.163934426
#> 4: -0.3808594 0.081967213
#> 5: 5.5000000 0.163934426
#> 6: 19.2492245 0.204918033
#> 7: 80.0100000 0.008196721
#> 8: 6.1007812 0.098360656
#> 9: 7.6700680 0.114754098
#> 10: 4355.0100000 0.000000000
ylt <- create_ylt(elt, sims=10 ,ann_rate = "rate" , event_id = "id", expval = "exp" , mu ="mean")
ylt
#> Year Loss Event
#> 1: 1 0.000000e+00 None
#> 2: 2 8.574328e+01 5
#> 3: 3 9.137924e-01 2
#> 4: 4 2.611786e+02 1
#> 5: 5 2.686697e+00 8
#> 6: 6 2.529234e+02 1
#> 7: 6 9.173005e+00 3
#> 8: 7 0.000000e+00 None
#> 9: 8 3.633260e-07 6
#> 10: 9 1.286863e+02 3
#> 11: 9 2.296461e+02 6
#> 12: 10 0.000000e+00 None
# Layer 500 xs 50
ylt[ , layer1_loss := layer_loss(Loss, Excess = 50 , Limit = 500 ) ]
ylt
#> Year Loss Event layer1_loss
#> 1: 1 0.000000e+00 None 0.00000
#> 2: 2 8.574328e+01 5 35.74328
#> 3: 3 9.137924e-01 2 0.00000
#> 4: 4 2.611786e+02 1 211.17861
#> 5: 5 2.686697e+00 8 0.00000
#> 6: 6 2.529234e+02 1 202.92345
#> 7: 6 9.173005e+00 3 0.00000
#> 8: 7 0.000000e+00 None 0.00000
#> 9: 8 3.633260e-07 6 0.00000
#> 10: 9 1.286863e+02 3 78.68626
#> 11: 9 2.296461e+02 6 179.64615
#> 12: 10 0.000000e+00 None 0.00000
ann <-ylt[, lapply( .SD , sum), by=Year, .SDcols = c("Loss","layer1_loss") ]
ann
#> Year Loss layer1_loss
#> 1: 1 0.000000e+00 0.00000
#> 2: 2 8.574328e+01 35.74328
#> 3: 3 9.137924e-01 0.00000
#> 4: 4 2.611786e+02 211.17861
#> 5: 5 2.686697e+00 0.00000
#> 6: 6 2.620965e+02 202.92345
#> 7: 7 0.000000e+00 0.00000
#> 8: 8 3.633260e-07 0.00000
#> 9: 9 3.583324e+02 258.33241
#> 10: 10 0.000000e+00 0.00000
expected_loss <- ann[ , lapply(.SD, mean) , .SDcols = c("Loss","layer1_loss") ]
expected_loss
#> Loss layer1_loss
#> 1: 97.09512 70.81777
ep <-create_oep_curve(ann , y= "Year", z="Loss")
ep
#> return_period OEP
#> 1: 10000 358.245795
#> 2: 5000 358.159183
#> 3: 1000 357.466284
#> 4: 500 356.600160
#> 5: 250 354.867913
#> 6: 200 354.001789
#> 7: 100 349.671171
#> 8: 50 341.009935
#> 9: 25 323.687463
#> 10: 10 271.720046
#> 11: 5 261.362178
#> 12: 2 1.800245
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.