The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

einet: Effective Information and Causal Emergence

Methods and utilities for causal emergence. Used to explore and compute various information theory metrics for networks, such as effective information, effectiveness and causal emergence.

Version: 0.1.0
Depends: R (≥ 3.2.0)
Imports: assertthat, igraph, magrittr, shiny, entropy
Suggests: testthat, RColorBrewer, knitr, rmarkdown, bench
Published: 2020-04-23
DOI: 10.32614/CRAN.package.einet
Author: Travis Byrum [aut, cre], Anshuman Swain [aut], Brennan Klein [aut], William Fagan [aut]
Maintainer: Travis Byrum <tbyrum at terpmail.umd.edu>
BugReports: https://github.com/travisbyrum/einet/issues
License: MIT + file LICENSE
URL: https://github.com/travisbyrum/einet
NeedsCompilation: no
Materials: README
CRAN checks: einet results

Documentation:

Reference manual: einet.pdf
Vignettes: Introduction

Downloads:

Package source: einet_0.1.0.tar.gz
Windows binaries: r-devel: einet_0.1.0.zip, r-release: einet_0.1.0.zip, r-oldrel: einet_0.1.0.zip
macOS binaries: r-release (arm64): einet_0.1.0.tgz, r-oldrel (arm64): einet_0.1.0.tgz, r-release (x86_64): einet_0.1.0.tgz, r-oldrel (x86_64): einet_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=einet to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.