The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Forecasting univariate time series with different decomposition based time delay neural network models. For method details see Yu L, Wang S, Lai KK (2008). <doi:10.1016/j.eneco.2008.05.003>.
Version: | 0.1.0 |
Depends: | R (≥ 2.10) |
Imports: | forecast, Rlibeemd |
Published: | 2021-01-19 |
DOI: | 10.32614/CRAN.package.eemdTDNN |
Author: | Kapil Choudhary [aut, cre], Girish Kumar Jha [aut, ths, ctb], Rajeev Ranjan Kumar [aut, ctb], Ronit Jaiswal [ctb] |
Maintainer: | Kapil Choudhary <choudharykapil832 at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
In views: | Agriculture |
CRAN checks: | eemdTDNN results |
Reference manual: | eemdTDNN.pdf |
Package source: | eemdTDNN_0.1.0.tar.gz |
Windows binaries: | r-devel: eemdTDNN_0.1.0.zip, r-release: eemdTDNN_0.1.0.zip, r-oldrel: eemdTDNN_0.1.0.zip |
macOS binaries: | r-release (arm64): eemdTDNN_0.1.0.tgz, r-oldrel (arm64): eemdTDNN_0.1.0.tgz, r-release (x86_64): eemdTDNN_0.1.0.tgz, r-oldrel (x86_64): eemdTDNN_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=eemdTDNN to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.