The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Write list comprehensions in R!
The eList package allows users to write vectorized for
loops and contains a variety of tools for working with lists and other
vectors. Just wrap a normal for loop within one of the
comprehension functions, such as List(), and let the
package do the rest.
Features include, but are not limited to:
"." to
separate names.if, else statements to filter
results.=., clust = and the
cluster.enum and items to
access the index or name within the loop, or zip objects
together.for loops.List(...) or List[...] for the
comprehension.. notation for
variables) or calls.You can install the released version of eList from CRAN with:
install.packages("eList")A simple “list” comprehension that accumulates all integer sequences
to 4 using the List function. Though it looks like a
for loop, it is actually using lapply behind
the scenes.
library(eList)
#>
#> Attaching package: 'eList'
#> The following object is masked from 'package:stats':
#>
#> filter
#> The following object is masked from 'package:utils':
#>
#> zip
List(for (i in 1:4) 1:i)
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 1 2
#>
#> [[3]]
#> [1] 1 2 3
#>
#> [[4]]
#> [1] 1 2 3 4Loops can be nested and filtered using if statements.
The example below uses Num to produce a numeric vector
rather than a list. Other comprehensions include Chr for
character vectors, Logical for logical vectors,
Vec for flat (non-list) vectors, etc.
Num(for (i in 1:4) for (j in 3:6) if (i == j) i^2)
#> [1] 9 16Use the “dot” notation to use multiple variables within the loop.
Chr(for (i.j in zip(1:4, 5:8)) paste0(i, j))
#> [1] "15" "26" "37" "48"Use = within the loop to assign a name to each item
within the list, or other item.
values <- zip(letters[1:4], 5:8)
List(for (i.j in values) i = j)
#> $a
#> [1] "5"
#>
#> $b
#> [1] "6"
#>
#> $c
#> [1] "7"
#>
#> $d
#> [1] "8"Parallelization is also very easy. Just create a cluster and add it
to the comprehension with the clust argument.
my_cluster <- auto_cluster()
x <- Num(for (i in sample(1:100, 50)) sqrt(i), clust = my_cluster)
# Close the cluster if not needed!
close_cluster(my_cluster)
x
#> [1] 3.872983 9.949874 3.316625 6.633250 7.000000 9.165151 9.899495 9.539392
#> [9] 9.055385 3.464102 5.830952 9.486833 3.741657 8.660254 4.898979 8.000000
#> [17] 4.690416 5.477226 5.385165 5.000000 8.485281 8.246211 4.358899 7.416198
#> [25] 8.717798 9.591663 9.433981 7.549834 3.162278 9.797959 7.615773 3.000000
#> [33] 9.746794 2.236068 5.291503 8.124038 9.219544 9.695360 7.483315 9.643651
#> [41] 3.605551 4.000000 1.732051 5.196152 2.828427 6.855655 7.681146 7.348469
#> [49] 7.211103 7.280110Want a statistical summary using a comprehension? eList contains a
variety of summary functions for that purpose. Stats is a
general summary comprehension that computes many different values.
Stats(for (i in sample(1:100, 50)) sqrt(i))
#> $min
#> [1] 2
#>
#> $q1
#> [1] 6.143211
#>
#> $med
#> [1] 7.483016
#>
#> $q3
#> [1] 8.587745
#>
#> $max
#> [1] 10
#>
#> $mean
#> [1] 7.172598
#>
#> $sd
#> [1] 2.028831eList also contains functional programming style functions for working with lists and other vectors. These functions perform an operation using a function on another object. They are similar to the higher order functions in Base R, but are pipe-friendly, handle a wide ranger of object types, and allow for different methods of specifying functions.
x <- list(1:4, 5:8, 9:12)
map(x, mean)
#> [[1]]
#> [1] 2.5
#>
#> [[2]]
#> [1] 6.5
#>
#> [[3]]
#> [1] 10.5This can also be calculated using formula notation. Formulas can be be written as either a two-sided formula or a one-sided formula by prefixing variables with dots.
# Two-sided Formula
map(x, i ~ sqrt(i) + 1)
#> [[1]]
#> [1] 2.000000 2.414214 2.732051 3.000000
#>
#> [[2]]
#> [1] 3.236068 3.449490 3.645751 3.828427
#>
#> [[3]]
#> [1] 4.000000 4.162278 4.316625 4.464102
# One-sided Formula
map(x, ~ sqrt(.i) + 1)
#> [[1]]
#> [1] 2.000000 2.414214 2.732051 3.000000
#>
#> [[2]]
#> [1] 3.236068 3.449490 3.645751 3.828427
#>
#> [[3]]
#> [1] 4.000000 4.162278 4.316625 4.464102The higher order functions also accept unevaluated “calls”.
round2 <- substitute(round(digits=2))
map(rnorm(5), round2)
#> [[1]]
#> [1] 0.16
#>
#> [[2]]
#> [1] -3.18
#>
#> [[3]]
#> [1] -0.17
#>
#> [[4]]
#> [1] -0.13
#>
#> [[5]]
#> [1] -0.27These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.