| Type: | Package | 
| Title: | Dynamic Panel Data Models | 
| Version: | 0.1.0 | 
| Author: | Taha Zaghdoudi | 
| Maintainer: | Taha Zaghdoudi <zedtaha@gmail.com> | 
| Description: | Computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables. | 
| License: | GPL-3 | 
| LazyData: | TRUE | 
| RoxygenNote: | 5.0.1 | 
| Depends: | R (≥ 3.3.0) | 
| Imports: | stats, gtools | 
| NeedsCompilation: | no | 
| Packaged: | 2016-08-28 10:51:09 UTC; Asus | 
| Repository: | CRAN | 
| Date/Publication: | 2016-08-28 13:24:47 | 
Dynamic Panel Data Models
Description
This package computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.
Details
| Package: | dynpanel | 
| Type: | Package | 
| Version: | 1.0 | 
| Date: | 2016-08-26 | 
| License: | GPL-3 | 
In this package, we apply the generalized method of moments to estimate the dynamic panel data models.
Author(s)
Taha Zaghdoudi
Taha Zaghdoudi <zedtaha@gmail.com>
References
Anderson, T. W.; Hsiao, Cheng (1981). Estimation of dynamic models with error components. ournal of the American Statistical Association. 76 (375) ,pp. 598-606.
Arellano, Manuel; Bond, Stephen (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies. 58, pp.2)-277. Cameron, A. Colin; Trivedi, Pravin K. (2005). Dynamic Models. Microeconometrics: Methods and Applications. New York: Cambridge University Press. pp. 763-768.
Hsiao, Cheng (2014). Dynamic Simultaneous Equations Models. Analysis of Panel Data. New York: Cambridge University Press. pp. 397-402.
Munnell AH (1990). Why has Productivity Growth Declined? Productivity and Public Investment, New England Economic Review, pp. 3-22.
Examples
 # Load data
 data(Produc)
 # Fit the dynamic panel data using the Arellano Bond (1991) instruments
 reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,4)
 summary(reg)
 # Fit the dynamic panel data using an automatic selection of appropriate IV matrix
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,0)
 #summary(reg)
 # Fit the dynamic panel data using the GMM estimator with the smallest set of instruments
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,1)
 #summary(reg)
 # Fit the dynamic panel data using a reduced form of IV from method 3
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,2)
 #summary(reg)
 # Fit the dynamic panel data using the IV matrix where the number of moments grows with kT
 # K: variables number and T: time per group
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,3)
 #summary(reg)
US States Production
Description
- statethe state 
- yearthe year 
- pcapprivate capital stock 
- hwyhighway and streets 
- waterwater and sewer facilities 
- utilother public buildings and structures 
- pcpublic capital 
- gspgross state products 
- emplabor input measured by the employement in non–agricultural payrolls 
- unempstate unemployment rate 
Usage
data(Produc)
Format
A data frame with 816 rows and 10 variables
method
Description
method
Usage
dpd(x, ...)
Arguments
| x | a numeric design matrix for the model. | 
| ... | not used | 
Author(s)
Zaghdoudi Taha
formula
Description
formula
Usage
## S3 method for class 'formula'
dpd(formula, data = list(), index = c("id", "time"), p,
  meth = c(0, 1, 2, 3, 4), ...)
Arguments
| formula | PIB~INF+TIR | 
| data | the dataframe | 
| index | : id is the name of the identity groups and time is the time per group | 
| p | scalar, autoregressive order for dependent variable | 
| meth | scalar, indicator for the Instruments to use | 
| ... | not used | 
Summary
Description
Summary
Usage
## S3 method for class 'dpd'
summary(object, ...)
Arguments
| object | is the object of the function | 
| ... | not used |