The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Detection of Chaotic and Regular Intervals in the Data
Version: 0.1.0
Description: Finds regular and chaotic intervals in the data using the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <doi:10.1137/080718851>.
Depends: R (≥ 3.5.0)
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Imports: Chaos01
RoxygenNote: 6.1.1
Packaged: 2019-03-22 12:14:11 UTC; radek
Author: Radek Halfar [aut, cre]
Maintainer: Radek Halfar <radek.halfar@vsb.cz>
Repository: CRAN
Date/Publication: 2019-03-25 11:00:03 UTC

Find chaotic motions in the data.

Description

Find chaotic motions in the data.

Usage

find_chaos(data, window_length, skip_window, skip_test01 = 1,
  test01_thresh = 0.05, find_thresh = 20)

Arguments

data

Analyzed data.

window_length

Length of the window for in which the 0-1 test for chaos will be computed.

skip_window

Length of the skip of the window moving in the data.

skip_test01

Length of the skip to take data for calculation the 0-1 test for chaos in the window.

test01_thresh

The threshold to decide about motion.

find_thresh

Precision of found intervals.

Value

The list of optimized chaotic motion borders.

Examples

# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)

vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
  # x_n+1 = r*x_n(1-x_n)
  vec.x[i] <- 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <-cons
vec.x[(chaos.start[2]+1):data.len] <-cons
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1
vec.x[chaos.start[2]:(chaos.start[2]+2000)] <- tr2

# Find chaotic intervals in vec.x and plot results.
chaotic_borders <- find_chaos(vec.x, "skip_window" = 1000,
  "window_length" = 3000, "find_thresh" = 300)

Find regular and chaotic motions in the data and plots the results.

Description

Find regular and chaotic motions in the data and plots the results.

Usage

find_motions(data, window_length, skip_window, skip_test01 = 1,
  test01_thresh = 0.05, find_thresh = 20)

Arguments

data

Analyzed data.

window_length

Length of the window for in which the 0-1 test for chaos will be computed

skip_window

Length of the skip of the window moving in the data.

skip_test01

Length of the skip to take data for calculation the 0-1 test for chaos in the window.

test01_thresh

The threshold to decide about motion.

find_thresh

Precision of found intervals.

Value

The list of optimized regular and chaotic motion borders.

Examples

# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)

vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
  # x_n+1 = r*x_n(1-x_n)
  vec.x[i] <- 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <-cons
vec.x[(chaos.start[2]+1):data.len] <-cons
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1
vec.x[chaos.start[2]:(chaos.start[2]+2000)] <- tr2

# Find chaotic and regular intervals in vec.x and plot results.
find_motions(vec.x, "skip_window" = 1000, "window_length" = 3000, "find_thresh" = 300)

Find regular motions in the data.

Description

Find regular motions in the data.

Usage

find_regularity(data, window_length, skip_window, skip_test01 = 1,
  test01_thresh = 0.05, find_thresh = 20)

Arguments

data

Analyzed data.

window_length

Length of the window for in which the 0-1 test for chaos will be computed.

skip_window

Length of the skip of the window moving in the data.

skip_test01

Length of the skip to take data for calculation the 0-1 test for chaos in the window.

test01_thresh

The threshold to decide about motion.

find_thresh

Precision of found intervals.

Value

The list of optimized regular and chaotic motion borders.

Examples

# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)

vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
  # x_n+1 = r*x_n(1-x_n)
  vec.x[i] <- 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <-cons
vec.x[(chaos.start[2]+1):data.len] <-cons
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1
vec.x[chaos.start[2]:(chaos.start[2]+2000)] <- tr2

# Find regular intervals in vec.x and plot results.
regular_borders <- find_regularity(vec.x, "skip_window" = 1000,
  "window_length" = 3000, "find_thresh" = 300)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.