The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Reformatting in dunlin
consists in replacing
predetermined values by another in particular variables for selected
tables of a data set stored.
This is performed in two steps:
A Reformatting Map (rule
object) is created which
specifies the correspondence between the old and the new values
The reformatting itself is performed with the
reformat()
function.
The Reformatting Map is a rule
object inheriting from
character
. Its names are the new values to be used, and its
values are the old values to be used.
rule(A = "a", B = c("c", "d"))
#> Mapping of:
#> A <- "a"
#> B <- "c", "d"
#> Convert to <NA>: ""
#> Convert to factor: TRUE
#> Drop unused level: FALSE
#> NA-replacing level in last position: TRUE
This rule will replace “a” with “A”, replace “c” or “d” with “B”.
reformat
reformat
is a generic supports reformatting of
character
or factor
. Reformatting for other
types of variables is meaningless. reformat
will also
preserve the attributes of the original data, e.g. the data type or
labels will be unchanged.
An example of reformatting character
can be
r <- rule(A = "a", B = c("c", "d"))
reformat(c("a", "c", "d", NA), r)
#> [1] A B B <NA>
#> Levels: A B
We can see that the NA
values are not changed.
Now we test the factor reformatting:
r <- rule(A = "a", B = c("c", "d"))
reformat(factor(c("a", "c", "d", NA)), r)
#> [1] A B B <NA>
#> Levels: A B
The NA
values are also not changed. However, if we
including reformatting for the NA
, there is something
different:
r <- rule(A = "a", C = NA, B = c("c", "d"))
reformat(factor(c("a", "c", "d", NA)), r)
#> [1] A B B C
#> Levels: A B C
By default, the level replacing NA
is set as the last
one. This can be changed by setting .na_last = FALSE
.
r <- rule(A = "a", C = NA, B = c("c", "d"))
reformat(factor(c("a", "c", "d", NA)), r, .na_last = FALSE)
#> [1] A B B C
#> Levels: A C B
For list
of data.frames
, the
format
argument is actually a nested list of rule. The
first layer indicates the table names, the second layer indicates the
variables in that table. Reformatting is only available for columns of
characters or factors, reformatting columns of another types will result
in a warning.
df1 <- data.frame(
"char" = c("", "b", NA, "a", "k", "x"),
"fact" = factor(c("f1", "f2", NA, NA, "f1", "f1"), levels = c("f2", "f1")),
"logi" = c(NA, FALSE, TRUE, NA, FALSE, NA)
)
df2 <- data.frame(
"char" = c("a", "b", NA, "a", "k", "x"),
"fact" = factor(c("f1", "f2", NA, NA, "f1", "f1"))
)
db <- list(df1 = df1, df2 = df2)
attr(db$df1$char, "label") <- "my label"
rule_map <- list(
df1 = list(
char = rule("Empty" = "", "B" = "b", "Not Available" = NA),
fact = rule("F1" = "f1"),
logi = rule()
),
df2 = list(
char = rule("Empty" = "", "A" = "a", "Not Available" = NA)
)
)
res <- reformat(db, rule_map, .na_last = TRUE)
#> Warning: Not implemented for class: logical! Returning original object.
res
#> $df1
#> char fact logi
#> 1 Empty F1 NA
#> 2 B f2 FALSE
#> 3 Not Available <NA> TRUE
#> 4 a <NA> NA
#> 5 k F1 FALSE
#> 6 x F1 NA
#>
#> $df2
#> char fact
#> 1 A f1
#> 2 b f2
#> 3 Not Available <NA>
#> 4 A <NA>
#> 5 k f1
#> 6 x f1
The behavior of a rule can be further refined using special mapping
values. * .to_NA
convert the specified character to
NA
at the end of the process.
r <- rule(A = "a", B = c("c", "d"), .to_NA = c("x"))
reformat(c("a", "c", "d", NA, "x"), r)
#> [1] A B B <NA> <NA>
#> Levels: A B
.drop
specifies whether unused levels should be
dropped.# With drop = FALSE
obj <- factor(c("a", "c", "d", NA), levels = c("d", "c", "a", "Not used"))
r <- rule(A = "a", B = c("c", "d"))
reformat(obj, r)
#> [1] A B B <NA>
#> Levels: A B Not used
# With drop = TRUE
obj <- factor(c("a", "c", "d", NA), levels = c("d", "c", "a", "Not used"))
r <- rule(A = "a", B = c("c", "d"), .drop = TRUE)
reformat(obj, r)
#> [1] A B B <NA>
#> Levels: A B
Note that behavior of the rule can be overridden using the
corresponding arguments in reformat
.
r <- rule(A = "a", B = c("c", "d"), .to_NA = c("x"), .drop = TRUE)
obj <- factor(c("a", "c", "d", NA, "x", "y"), levels = c("d", "c", "a", "Not used", "x", "y"))
reformat(obj, r)
#> [1] A B B <NA> <NA> y
#> Levels: A B y
# Override
reformat(obj, r, .to_NA = "y", .drop = FALSE)
#> [1] A B B <NA> x <NA>
#> Levels: A B Not used x
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.