The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Implementer’s interface

library(conflicted)
library(dplyr)
conflict_prefer("filter", "dplyr")
#> [conflicted] Removing existing preference.
#> [conflicted] Will prefer dplyr::filter over any other package.

duckplyr also defines a set of generics that provide a low-level implementer’s interface for dplyr’s high-level user interface. Other packages may then implement methods for those generics.

library(conflicted)
library(dplyr)
conflict_prefer("filter", "dplyr")
#> [conflicted] Removing existing preference.
#> [conflicted] Will prefer dplyr::filter over any other package.
library(duckplyr)
#> ✔ Overwriting dplyr methods with duckplyr methods.
#> ℹ Turn off with `duckplyr::methods_restore()`.
# Create a relational to be used by examples below
new_dfrel <- function(x) {
  stopifnot(is.data.frame(x))
  new_relational(list(x), class = "dfrel")
}
mtcars_rel <- new_dfrel(mtcars[1:5, 1:4])

# Example 1: return a data.frame
rel_to_df.dfrel <- function(rel, ...) {
  unclass(rel)[[1]]
}
rel_to_df(mtcars_rel)
#>                    mpg cyl disp  hp
#> Mazda RX4         21.0   6  160 110
#> Mazda RX4 Wag     21.0   6  160 110
#> Datsun 710        22.8   4  108  93
#> Hornet 4 Drive    21.4   6  258 110
#> Hornet Sportabout 18.7   8  360 175

# Example 2: A (random) filter
rel_filter.dfrel <- function(rel, exprs, ...) {
  df <- unclass(rel)[[1]]

  # A real implementation would evaluate the predicates defined
  # by the exprs argument
  new_dfrel(df[sample.int(nrow(df), 3, replace = TRUE), ])
}

rel_filter(
  mtcars_rel,
  list(
    relexpr_function(
      "gt",
      list(relexpr_reference("cyl"), relexpr_constant("6"))
    )
  )
)
#> [[1]]
#>                    mpg cyl disp  hp
#> Hornet 4 Drive    21.4   6  258 110
#> Datsun 710        22.8   4  108  93
#> Hornet Sportabout 18.7   8  360 175
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 3: A custom projection
rel_project.dfrel <- function(rel, exprs, ...) {
  df <- unclass(rel)[[1]]

  # A real implementation would evaluate the expressions defined
  # by the exprs argument
  new_dfrel(df[seq_len(min(3, base::ncol(df)))])
}

rel_project(
  mtcars_rel,
  list(relexpr_reference("cyl"), relexpr_reference("disp"))
)
#> [[1]]
#>                    mpg cyl disp
#> Mazda RX4         21.0   6  160
#> Mazda RX4 Wag     21.0   6  160
#> Datsun 710        22.8   4  108
#> Hornet 4 Drive    21.4   6  258
#> Hornet Sportabout 18.7   8  360
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 4: A custom ordering (eg, ascending by mpg)
rel_order.dfrel <- function(rel, exprs, ...) {
  df <- unclass(rel)[[1]]

  # A real implementation would evaluate the expressions defined
  # by the exprs argument
  new_dfrel(df[order(df[[1]]), ])
}

rel_order(
  mtcars_rel,
  list(relexpr_reference("mpg"))
)
#> [[1]]
#>                    mpg cyl disp  hp
#> Hornet Sportabout 18.7   8  360 175
#> Mazda RX4         21.0   6  160 110
#> Mazda RX4 Wag     21.0   6  160 110
#> Hornet 4 Drive    21.4   6  258 110
#> Datsun 710        22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 5: A custom join
rel_join.dfrel <- function(left, right, conds, join, ...) {
  left_df <- unclass(left)[[1]]
  right_df <- unclass(right)[[1]]

  # A real implementation would evaluate the expressions
  # defined by the conds argument,
  # use different join types based on the join argument,
  # and implement the join itself instead of relaying to left_join().
  new_dfrel(dplyr::left_join(left_df, right_df))
}

rel_join(new_dfrel(data.frame(mpg = 21)), mtcars_rel)
#> Joining with `by = join_by(mpg)`
#> Joining with `by = join_by(mpg)`
#> [[1]]
#>   mpg cyl disp  hp
#> 1  21   6  160 110
#> 2  21   6  160 110
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 6: Limit the maximum rows returned
rel_limit.dfrel <- function(rel, n, ...) {
  df <- unclass(rel)[[1]]

  new_dfrel(df[seq_len(n), ])
}

rel_limit(mtcars_rel, 3)
#> [[1]]
#>                mpg cyl disp  hp
#> Mazda RX4     21.0   6  160 110
#> Mazda RX4 Wag 21.0   6  160 110
#> Datsun 710    22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 7: Suppress duplicate rows
#  (ignoring row names)
rel_distinct.dfrel <- function(rel, ...) {
  df <- unclass(rel)[[1]]

  new_dfrel(df[!duplicated(df), ])
}

rel_distinct(new_dfrel(mtcars[1:3, 1:4]))
#> [[1]]
#>             mpg cyl disp  hp
#> Mazda RX4  21.0   6  160 110
#> Datsun 710 22.8   4  108  93
#> 
#> attr(,"class")
#> [1] "dfrel"      "relational"

# Example 8: Return column names
rel_names.dfrel <- function(rel, ...) {
  df <- unclass(rel)[[1]]

  names(df)
}

rel_names(mtcars_rel)
#> [1] "mpg"  "cyl"  "disp" "hp"

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.