The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(dsample)Please run demo(mix2) and demo(mix3).
Data are taken from Dalal, Fowlkes, and Hoadley (1989). Details are described in Dezfuli et al. (2009) on pages 144–146.
expr <- str2expression("
  lp <- 0
  for(i in 1:len) lp <- lp + 
    y[i] * log(exp(alpha + beta*temp[i])/(1+exp(alpha + beta*temp[i])))
  for(i in 1:len) lp <- lp + 
    (1-y[i])*log(1/(1+exp(alpha + beta*temp[i])))
  lp <- lp + alpha - exp(alpha)/b
  lp <- exp(lp)
")
sets <- list(
  alpha=runif(n=nd, min=10, max=20), 
  beta=runif(n=nd, min=-0.3, max=-0.15)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>      alpha       beta 
#> 15.1416129 -0.2345963
op$stdevs
#>      alpha       beta 
#> 1.18252018 0.01836517Data are taken from Prentice (1976). Details are described in OpenBUGS Examples Vol 2. Beetles.
expr <- str2expression("
  sigma <- exp(log.sigma)
  m1 <- exp(log.m1)
  
  lp <- 0
  for(i in 1:len) lp <- lp + 
    yi[i]*m1*log((exp((wi[i]-mu)/sigma)/(1+exp((wi[i]-mu)/sigma))))
  for(i in 1:len) lp <- lp + 
    (ni[i]-yi[i])*log(( 1- (exp((wi[i]-mu)/sigma)/(1+exp((wi[i]-mu)/sigma)))^m1 ))
  lp <- lp + (a-1)*log.m1 - 2*(e+1)*log.sigma
  lp <- lp - 0.5*((mu-c1)/d)^2
  lp <- lp - m1/b - 1/(f*sigma^2)
  lp <- exp(lp)
")
sets <- list(
  mu=runif(nd, min=1.75, max=1.85), 
  log.sigma=runif(nd, min=-5, max=-3), 
  log.m1=runif(nd, min=-2, max=0.1)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>        mu log.sigma    log.m1 
#>  1.813845 -4.082532 -1.174099
op$stdevs
#>        mu log.sigma    log.m1 
#> 0.0154026 0.2642583 0.3701782Data are taken from Ratkowsky (1986). Details are described in OpenBUGS Examples Vol 2.Dugongs.
expr <- str2expression("
  lp <- (len/2 + k - 1)*log(tau)
  for(i in 1:len) lp <- lp - 
    tau*0.5*(y.length[i] - alpha+beta*gamma^x.age[i])^2
  lp <- lp - tau*k - tau.alpha*alpha^2*0.5 - tau.beta*beta^2*0.5
  lp <- exp(lp)
")
sets <- list(
  alpha=runif(nd, min=2, max=3), 
  beta=runif(nd, min=0.5, max=1.5), 
  gamma=runif(nd, min=0.5, max=1.5), 
  tau=runif(nd, min=0.2, max=200)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>       alpha        beta       gamma         tau 
#>   2.5921814   0.9837057   0.8154180 122.4837366
op$stdevs
#>      alpha       beta      gamma        tau 
#>  0.1859048  0.1783082  0.1047462 51.0445042Data are taken from Diggle and Marron (1988).
expr <- str2expression("
  ll <- 0
  ll <- ll + (cum.x.until.k[kappa]-0.5)*log(theta) + 
        (cum.x.after.k[kappa]-0.5)*log(lambda) - 
        kappa*theta -  (len-kappa)*lambda
  lp <- ll  + 1.5*log(alpha) + 1.5*log(beta) - 
        (theta+1)*alpha - (lambda+1)*beta
  lp <- exp(lp)
")
sets <- list(
  kappa=sample(x=30:50, size=nd, replace=TRUE),
  theta=runif(nd, min=2.2, max=4),
  lambda=runif(nd, min=0.6, max=1.4),
  alpha=runif(nd, min=0, max=2),
  beta=runif(nd, min=0, max=4)
)
smp <- dsample(expr=expr, rpmat=sets, nk=1e3, n=1e3)
op <- summary(smp)
op$means
#>      kappa      theta     lambda      alpha       beta 
#> 40.1420000  3.0530883  0.9149556  0.6408854  1.3262175
op$stdevs
#>     kappa     theta    lambda     alpha      beta 
#> 2.6150860 0.3075382 0.1258025 0.3889245 0.7792260Data are taken from Gaver and O’Muircheartaigh (1987). Details are described in OpenBUGS Examples Vol 2..
expr <- str2expression("
  ll <- 0
  for(i in 1:len){
    sum.cmd <- gsub(' ', '', paste('ll <- ll +(failure[', i,']+alpha-1)*log(lambda', i,')'))
    eval(parse(text=sum.cmd))
  }
  for(i in 1:len){
    sum.cmd <- gsub(' ', '', paste('ll <- ll - (time[', i,']+bb)*lambda', i))
    eval(parse(text=sum.cmd))
  }
  
  lp <- ll + (10*alpha+gg-1)*log(bb) - delta*bb
  lp <- exp(lp)
")
sets <- list(
  bb=runif(nd, 0, 4),
  lambda1=runif(nd, 0, 0.2),
  lambda2=runif(nd, 0, 0.4),
  lambda3=runif(nd, 0, 0.25),
  lambda4=runif(nd, 0, 0.25),
  lambda5=runif(nd, 0, 2),
  lambda6=runif(nd, 0, 1.5),
  lambda7=runif(nd, 0, 2),
  lambda8=runif(nd, 0, 2),
  lambda9=runif(nd, 0, 4),
  lambda10=runif(nd, 0, 3.5)
)
smp <- dsample(expr=expr, rpmat=sets, nk=5e4, n=3e3)
op <- summary(smp)
op$means
#>         bb    lambda1    lambda2    lambda3    lambda4    lambda5    lambda6 
#> 1.10946266 0.06747204 0.10239138 0.09436450 0.11230018 0.57639415 0.61232911 
#>    lambda7    lambda8    lambda9   lambda10 
#> 0.78275520 0.78171333 1.40242048 1.93788664
op$stdevs
#>         bb    lambda1    lambda2    lambda3    lambda4    lambda5    lambda6 
#> 0.65214851 0.03357516 0.08561880 0.04104042 0.03711780 0.34884930 0.20068897 
#>    lambda7    lambda8    lambda9   lambda10 
#> 0.43586702 0.47294621 0.84314819 0.52456361These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.