The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

doc2vec

This repository contains an R package allowing to build Paragraph Vector models also known as doc2vec models. You can train the distributed memory (‘PV-DM’) and the distributed bag of words (‘PV-DBOW’) models. Next to that, it also allows to build a top2vec model allowing to cluster documents based on these embeddings.

Installation

Look to the documentation of the functions

help(package = "doc2vec")

Example on doc2vec

library(doc2vec)
library(tokenizers.bpe)
library(udpipe)
data(belgium_parliament, package = "tokenizers.bpe")
x <- subset(belgium_parliament, language %in% "dutch")
x <- data.frame(doc_id = sprintf("doc_%s", 1:nrow(x)), 
                text   = x$text, 
                stringsAsFactors = FALSE)
x$text   <- tolower(x$text)
x$text   <- gsub("[^[:alpha:]]", " ", x$text)
x$text   <- gsub("[[:space:]]+", " ", x$text)
x$text   <- trimws(x$text)
x$nwords <- txt_count(x$text, pattern = " ")
x        <- subset(x, nwords < 1000 & nchar(text) > 0)
## Low-dimensional model using DM, low number of iterations, for speed and display purposes
model <- paragraph2vec(x = x, type = "PV-DM", dim = 5, iter = 3,  
                       min_count = 5, lr = 0.05, threads = 1)
str(model)
## List of 3
##  $ model  :<externalptr> 
##  $ data   :List of 4
##   ..$ file        : chr "C:\\Users\\Jan\\AppData\\Local\\Temp\\Rtmpk9Npjg\\textspace_1c446bffa0e.txt"
##   ..$ n           : num 170469
##   ..$ n_vocabulary: num 3867
##   ..$ n_docs      : num 1000
##  $ control:List of 9
##   ..$ min_count: int 5
##   ..$ dim      : int 5
##   ..$ window   : int 5
##   ..$ iter     : int 3
##   ..$ lr       : num 0.05
##   ..$ skipgram : logi FALSE
##   ..$ hs       : int 0
##   ..$ negative : int 5
##   ..$ sample   : num 0.001
##  - attr(*, "class")= chr "paragraph2vec_trained"
## More realistic model
model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20, 
                       min_count = 5, lr = 0.05, threads = 4)
embedding <- as.matrix(model, which = "words")
embedding <- as.matrix(model, which = "docs")
vocab     <- summary(model,   which = "docs")
vocab     <- summary(model,   which = "words")
sentences <- list(
  sent1 = c("geld", "diabetes"),
  sent2 = c("frankrijk", "koning", "proximus"))
embedding <- predict(model, newdata = sentences,                     type = "embedding")
embedding <- predict(model, newdata = c("geld", "koning"),           type = "embedding", which = "words")
embedding <- predict(model, newdata = c("doc_1", "doc_10", "doc_3"), type = "embedding", which = "docs")
ncol(embedding)
## [1] 100
embedding[, 1:4]
##              [,1]        [,2]       [,3]        [,4]
## doc_1  0.05721277 -0.10298843  0.1089350 -0.03075439
## doc_10 0.09553983  0.05211980 -0.0513489 -0.11847925
## doc_3  0.08008177 -0.03324692  0.1563442  0.06585038
nn <- predict(model, newdata = c("proximus", "koning"), type = "nearest", which = "word2word", top_n = 5)
nn
## [[1]]
##      term1              term2 similarity rank
## 1 proximus telefoontoestellen  0.5357178    1
## 2 proximus            belfius  0.5169221    2
## 3 proximus                ceo  0.4839031    3
## 4 proximus            klanten  0.4819543    4
## 5 proximus               taal  0.4590944    5
## 
## [[2]]
##    term1          term2 similarity rank
## 1 koning     ministerie  0.5615162    1
## 2 koning verplaatsingen  0.5484987    2
## 3 koning        familie  0.4911003    3
## 4 koning       grondwet  0.4871097    4
## 5 koning       gedragen  0.4694150    5
nn <- predict(model, newdata = c("proximus", "koning"), type = "nearest", which = "word2doc",  top_n = 5)
nn
## [[1]]
##      term1   term2 similarity rank
## 1 proximus doc_105  0.6684639    1
## 2 proximus doc_863  0.5917463    2
## 3 proximus doc_186  0.5233522    3
## 4 proximus doc_620  0.4919243    4
## 5 proximus doc_862  0.4619178    5
## 
## [[2]]
##    term1   term2 similarity rank
## 1 koning  doc_44  0.6686417    1
## 2 koning  doc_45  0.5616031    2
## 3 koning doc_583  0.5379452    3
## 4 koning doc_943  0.4855201    4
## 5 koning doc_797  0.4573555    5
nn <- predict(model, newdata = c("doc_198", "doc_285"), type = "nearest", which = "doc2doc",   top_n = 5)
nn
## [[1]]
##     term1   term2 similarity rank
## 1 doc_198 doc_343  0.5522854    1
## 2 doc_198 doc_899  0.4902798    2
## 3 doc_198 doc_983  0.4847047    3
## 4 doc_198 doc_642  0.4829021    4
## 5 doc_198 doc_336  0.4674844    5
## 
## [[2]]
##     term1   term2 similarity rank
## 1 doc_285 doc_319  0.5318567    1
## 2 doc_285 doc_286  0.5100293    2
## 3 doc_285 doc_113  0.5056069    3
## 4 doc_285 doc_526  0.4840761    4
## 5 doc_285 doc_488  0.4805686    5
sentences <- list(
  sent1 = c("geld", "frankrijk"),
  sent2 = c("proximus", "onderhandelen"))
nn <- predict(model, newdata = sentences, type = "nearest", which = "sent2doc", top_n = 5)
nn
## $sent1
##   term1   term2 similarity rank
## 1 sent1 doc_742  0.4830917    1
## 2 sent1 doc_151  0.4340138    2
## 3 sent1 doc_825  0.4263285    3
## 4 sent1 doc_740  0.4059283    4
## 5 sent1 doc_776  0.4024554    5
## 
## $sent2
##   term1   term2 similarity rank
## 1 sent2 doc_105  0.5497447    1
## 2 sent2 doc_863  0.5061581    2
## 3 sent2 doc_862  0.4973840    3
## 4 sent2 doc_620  0.4793786    4
## 5 sent2 doc_186  0.4755909    5
sentences <- strsplit(setNames(x$text, x$doc_id), split = " ")
nn <- predict(model, newdata = sentences, type = "nearest", which = "sent2doc", top_n = 5)

Example on top2vec

Top2vec clusters document semantically and finds most semantically relevant terms for each topic

library(doc2vec)
library(word2vec)
library(uwot)
library(dbscan)
data(be_parliament_2020, package = "doc2vec")
x      <- data.frame(doc_id = be_parliament_2020$doc_id,
                     text   = be_parliament_2020$text_nl,
                     stringsAsFactors = FALSE)
x$text <- txt_clean_word2vec(x$text)
x      <- subset(x, txt_count_words(text) < 1000)

d2v    <- paragraph2vec(x, type = "PV-DBOW", dim = 50, 
                        lr = 0.05, iter = 10,
                        window = 15, hs = TRUE, negative = 0,
                        sample = 0.00001, min_count = 5, 
                        threads = 1)
model  <- top2vec(d2v, 
                  control.dbscan = list(minPts = 50), 
                  control.umap = list(n_neighbors = 15L, n_components = 3), umap = tumap, 
                  trace = TRUE)
info   <- summary(model, top_n = 7)
info$topwords

Support in text mining

Need support in text mining? Contact BNOSAC: http://www.bnosac.be

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.