The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of dlbayes is to implement the Dirichlet-Laplace shrinkage prior in Bayesian linear regression and variable selection, featuring: - utility functions to implement Dirichlet-Laplace priors; - scalability in Bayesian linear regression; - variable selection based on penalized credible regions.
You can install the released version of dlbayes from CRAN with:
install.packages("dlbayes")
rho=0.5
p=1000
n=100
# set up correlation matrix
m<-matrix(NA,p,p)
for(i in 1:p){
for(j in i:p){
m[i,j]=rho^(j-i)
}
}
m[lower.tri(m)]<-t(m)[lower.tri(m)]
# generate x
library("mvtnorm")
x=rmvnorm(n,mean=rep(0,p),sigma=m)
# generate beta
beta=c(rep(0,10),runif(n=5,min=-1,max=1),rep(0,20),runif(n=5,min=-1,max=1),rep(0,p-40))
# generate y
y=x%*%beta+rnorm(n)
#tuning hyperparameter [1/max(n,p),1/2]
hyper=dlhyper(x,y)
# MCMC sampling
dlresult=dl(x,y,hyper=hyper)
# visualization of Dirichlet-Lapace priors
# set "plt=TRUE" to make plots
# theta=dlprior(hyper=1/2,p=10000000,plt=TRUE,min=-5,max=5,sigma=1)
# summary of posterior samples
da=dlanalysis(dlresult,alpha=0.05)
da$betamean
da$betamedian
da$LeftCI
da$RightCI
# variable selection
betaresult=dlvs(dlresult)
# indices of selected variables
num=which(betaresult!=0)
# coefficients of selected variable
coef=betaresult[num]
Bhattacharya, A., Pati, D., Pillai, N. S., and Dunson, D. B. (2015). “Dirichlet–Laplace priors for optimal shrinkage.” Journal of the American Statistical Association, 110(512): 1479–1490.
Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). “Fast sampling with Gaussian scale-mixture priors in high-dimensional regression.” Biomoetrika, 103(4): 985–991.
Bondell, H. D. and Reich, B. J. (2012). “Consistent high-dimensional Bayesian variable selection via penalized credible regions.” Journal of the American Statistical Association, 107(500): 1610–1624.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.