The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Calculate Diversity and Segregation Indices
Version: 0.0.5
Date: 2022-12-16
Description: Implements common measures of diversity and spatial segregation. This package has tools to compute the majority of measures are reviewed in Massey and Denton (1988) <doi:10.2307/2579183>. Multiple common measures of within-geography diversity are implemented as well. All functions operate on data frames with a 'tidyselect' based workflow.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.2
BugReports: https://github.com/christopherkenny/divseg/issues
URL: https://github.com/christopherkenny/divseg/, https://christophertkenny.com/divseg/
Suggests: roxygen2, testthat (≥ 3.0.0)
Imports: sf (≥ 1.0.0), rlang (≥ 0.4.11), dplyr, magrittr, tidyselect, tibble, units
Depends: R (≥ 2.10)
Config/testthat/edition: 3
NeedsCompilation: no
Packaged: 2022-12-17 00:07:08 UTC; chris
Author: Christopher T. Kenny ORCID iD [aut, cre]
Maintainer: Christopher T. Kenny <christopherkenny@fas.harvard.edu>
Repository: CRAN
Date/Publication: 2022-12-17 08:30:02 UTC

Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs

A value or the magrittr placeholder.

rhs

A function call using the magrittr semantics.

Value

The result of calling rhs(lhs).


de_county

Description

This data contains 2010 Census data for each of the three counties in DE.

Usage

data("de_county")

Format

An sf dataframe with 3 observations

Examples

data("de_county")

de_tract

Description

This data contains 2010 Census data for each of the 218 tracts in DE.

Usage

data("de_tract")

Format

An sf dataframe with 218 observations

Examples

data("de_tract")

Compute Absolute Centralization

Description

Compute Absolute Centralization

Usage

ds_abs_cent(.data, .cols, .name)

abs_cent(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with absolute centralization. Leave missing to return a vector.

...

arguments to forward to ds_abs_cent from abs_cent

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_abs_cent(de_county, c(pop_white, starts_with('pop_')))
ds_abs_cent(de_county, c(pop_white, starts_with('pop_')), 'abs_cent')

Compute Absolute Clustering

Description

Compute Absolute Clustering

Usage

ds_abs_clust(.data, .cols, .name)

abs_clust(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with absolute clustering. Leave missing to return a vector.

...

arguments to forward to ds_abs_clust from abs_clust

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_abs_clust(de_county, c(pop_white, starts_with('pop_')))
ds_abs_clust(de_county, c(pop_white, starts_with('pop_')), 'abs_clust')

Compute Absolute Concentration

Description

Compute Absolute Concentration

Usage

ds_abs_conc(.data, .cols, .name)

abs_conc(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with absolute concentration. Leave missing to return a vector.

...

arguments to forward to ds_abs_conc from abs_conc

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_abs_conc(de_county, c(pop_black, starts_with('pop_')))
ds_abs_conc(de_county, c(pop_black, starts_with('pop_')), 'abs_conc')

Compute Atkinson b Index

Description

Compute Atkinson b Index

Usage

ds_atkinson(.data, .cols, .name, b = 0.5)

atkinson(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with Atkinson b index. Leave missing to return a vector.

b

Default 0.5. Exponent parameter b, where 0 <= b <= 1.

...

arguments to forward to ds_atkinson from atkinson

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_atkinson(de_county, c(pop_white, starts_with('pop_')))
ds_atkinson(de_county, starts_with('pop_'), 'atkinson')

Compute Blau's Index

Description

Compute Blau's Index

Usage

ds_blau(.data, .cols, .name)

blau(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with.

.name

name for column with Blau index. Leave missing to return a vector.

...

arguments to forward to ds_blau from blau

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_blau(de_county, starts_with('pop_'))
ds_blau(de_county, starts_with('pop_'), 'blau')

Compute Correlation Index

Description

Compute Correlation Index

Usage

ds_correlation(.data, .cols, .name)

correlation(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with Correlation index. Leave missing to return a vector.

...

arguments to forward to ds_correlation from correlation

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_correlation(de_county, c(pop_white, starts_with('pop_')))
ds_correlation(de_county, starts_with('pop_'), 'correlation')

Compute Distance Decay Interaction

Description

Compute Distance Decay Interaction

Usage

ds_dd_interaction(.data, .cols, .name, .comp = FALSE)

dd_interaction(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with distance decay interaction. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_dd_interaction from dd_interaction

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_dd_interaction(de_county, c(pop_black, starts_with('pop_')))
ds_dd_interaction(de_county, c(pop_black, starts_with('pop_')), 'dd_interaction')

Compute Distance Decay Isolation

Description

Compute Distance Decay Isolation

Usage

ds_dd_isolation(.data, .cols, .name, .comp = FALSE)

dd_isolation(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with distance decay isolation. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_dd_isolation from dd_isolation

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_dd_isolation(de_county, c(pop_black, starts_with('pop_')))
ds_dd_isolation(de_county, c(pop_black, starts_with('pop_')), 'dd_isolation')

Compute Delta Index

Description

Compute Delta Index

Usage

ds_delta(.data, .cols, .name, .comp = FALSE)

delta(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with delta index. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_delta from delta

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_delta(de_county, c(pop_white, starts_with('pop_')))
ds_delta(de_county, starts_with('pop_'), 'delta')

Compute Dissimilarity Index

Description

Compute Dissimilarity Index

Usage

ds_dissim(.data, .cols, .name, .comp = FALSE)

dissim(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with dissimilarity index. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_dissim from dissim

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_dissim(de_county, c(pop_white, starts_with('pop_')))
ds_dissim(de_county, c(pop_white, starts_with('pop_')), .comp = TRUE)
ds_dissim(de_county, starts_with('pop_'), 'dissim')

Compute Diversity

Description

This is equivalent to perplexity.

Usage

ds_diversity(.data, .cols, .name, q = 1)

diversity(..., .data = dplyr::across(everything()))

ds_perplexity(.data, .cols, .name, q = 1)

perplexity(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with.

.name

name for column with diversity. Leave missing to return a vector.

q

exponent parameter. Default 0. Can not be 1.

...

arguments to forward to ds_diversity from diversity

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_diversity(de_county, starts_with('pop_'))
ds_diversity(de_county, starts_with('pop_'), 'diversity')

Compute Entropy Index

Description

Compute Entropy Index

Usage

ds_entropy(.data, .cols, .name, .comp = FALSE)

entropy(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with entropy index. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_entropy from entropy

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_entropy(de_county, c(pop_white, starts_with('pop_')))
ds_entropy(de_county, starts_with('pop_'), 'entropy')

Compute Gini Index

Description

Compute Gini Index

Usage

ds_gini(.data, .cols, .name, .comp = FALSE)

gini(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with gini index. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_gini from gini

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_gini(de_county, c(pop_white, starts_with('pop_')))
ds_gini(de_county, starts_with('pop_'), 'gini')

Compute Herfindahl-Hirshman Index

Description

This is equivalent to the Simpson Index.

Usage

ds_hhi(.data, .cols, .name)

hhi(..., .data = dplyr::across(everything()))

ds_simpson(.data, .cols, .name)

simpson(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with.

.name

name for column with HHI. Leave missing to return a vector.

...

arguments to forward to ds_hhi from hhi

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_hhi(de_county, starts_with('pop_'))
ds_hhi(de_county, starts_with('pop_'), 'blau')

Compute Interaction Index

Description

Compute Interaction Index

Usage

ds_interaction(.data, .cols, .name, .comp = FALSE)

interaction(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with Interaction index. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_interaction from interaction

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_interaction(de_county, c(pop_white, starts_with('pop_')))
ds_interaction(de_county, starts_with('pop_'), 'interaction')

Compute Simpson Index

Description

Compute Simpson Index

Usage

ds_inv_simpson(.data, .cols, .name)

inv_simpson(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with.

.name

name for column with Simpson Index Leave missing to return a vector.

...

arguments to forward to ds_inv_simpson from inv_simpson

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_inv_simpson(de_county, starts_with('pop_'))
ds_inv_simpson(de_county, starts_with('pop_'), 'blau')

Compute Isolation Index

Description

Compute Isolation Index

Usage

ds_isolation(.data, .cols, .name, .comp = FALSE)

isolation(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with Isolation index. Leave missing to return a vector.

.comp

Default is FALSE. FALSE returns the sum, TRUE returns the components.

...

arguments to forward to ds_isolation from isolation

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_isolation(de_county, c(pop_white, starts_with('pop_')))
ds_isolation(de_county, starts_with('pop_'), 'isolation')

Compute Relative Centralization

Description

Compute Relative Centralization

Usage

ds_rel_cent(.data, .cols, .name)

rel_cent(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with relative centralization. Leave missing to return a vector.

...

arguments to forward to ds_rel_cent from rel_cent

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_rel_cent(de_county, c(pop_white, starts_with('pop_')))
ds_rel_cent(de_county, c(pop_white, starts_with('pop_')), 'rel_cent')

Compute Relative Clustering

Description

Compute Relative Clustering

Usage

ds_rel_clust(.data, .cols, .name)

rel_clust(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with relative clustering. Leave missing to return a vector.

...

arguments to forward to ds_rel_clust from rel_clust

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_rel_clust(de_county, c(pop_black, starts_with('pop_')))
ds_rel_clust(de_county, c(pop_black, starts_with('pop_')), 'rel_clust')

Compute Relative Concentration

Description

Compute Relative Concentration

Usage

ds_rel_conc(.data, .cols, .name)

rel_conc(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with relative concentration. Leave missing to return a vector.

...

arguments to forward to ds_rel_conc from rel_conc

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_rel_conc(de_county, c(pop_black, starts_with('pop_')))
ds_rel_conc(de_county, c(pop_black, starts_with('pop_')), 'rel_conc')

Compute Reyni Entropy

Description

Compute Reyni Entropy

Usage

ds_reyni(.data, .cols, .name, q = 0)

reyni(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with.

.name

name for column with Reyni entropy. Leave missing to return a vector.

q

exponent parameter. Default 0. Can not be 1.

...

arguments to forward to ds_reyni from reyni

Value

a tibble or numeric vector if .name missing

Examples

data('de_county')
ds_reyni(de_county, starts_with('pop_'))
ds_reyni(de_county, starts_with('pop_'), 'reyni')

Compute Shannon Index

Description

Compute Shannon Index

Usage

ds_shannon(.data, .cols, .name)

shannon(..., .data = dplyr::across(everything()))

Arguments

.data

tibble

.cols

tidy-select Columns to compute the measure with.

.name

name for column with Shannon index. Leave missing to return a vector.

...

arguments to forward to ds_shannon from shannon

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_shannon(de_county, starts_with('pop_'))
ds_shannon(de_county, starts_with('pop_'), 'shannon')

Compute Spatial Proximity

Description

Compute Spatial Proximity

Usage

ds_spat_prox(.data, .cols, .name)

spat_prox(..., .data = dplyr::across(everything()))

Arguments

.data

tibble with sf geometry

.cols

tidy-select Columns to compute the measure with. Must be at least 2 columns. If more than 2, treats first column as first group and sum of other columns as second.

.name

name for column with spatial proximity. Leave missing to return a vector.

...

arguments to forward to ds_spat_prox from spat_prox

Value

a tibble or numeric vector if .name missing

Examples

data("de_county")
ds_spat_prox(de_county, c(pop_black, starts_with('pop_')))
ds_spat_prox(de_county, c(pop_black, starts_with('pop_')), 'spat_prox')

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

tidyselect

all_of, any_of, contains, ends_with, everything, last_col, matches, num_range, one_of, starts_with


Tidy eval helpers

Description

This page lists the tidy eval tools reexported in this package from rlang. To learn about using tidy eval in scripts and packages at a high level, see the dplyr programming vignette and the ggplot2 in packages vignette. The Metaprogramming section of Advanced R may also be useful for a deeper dive.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.