The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Exploratory Data Analysis System
Version: 3.1.7
Description: Performs an exploratory data analysis through a 'shiny' interface. It includes basic methods such as the mean, median, mode, normality test, among others. It also includes clustering techniques such as Principal Components Analysis, Hierarchical Clustering and the K-Means Method.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Imports: DT, rlang, golem, shiny (≥ 1.7.4), config, plotly, loadeR, cluster, ggplot2, shinyjs, shinyAce, ggdendro, echarts4r, htmltools, FactoMineR, htmlwidgets, colourpicker, shinydashboard, shinycustomloader, shinydashboardPlus (≥ 2.0.0)
Depends: R (≥ 4.4)
Encoding: UTF-8
URL: https://promidat.website/, https://github.com/PROMiDAT/discoveR
BugReports: https://github.com/PROMiDAT/discoveR/issues
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2025-02-12 19:27:14 UTC; r583594
Author: Oldemar Rodriguez [aut, cre], Diego Jiménez [aut]
Maintainer: Oldemar Rodriguez <oldemar.rodriguez@ucr.ac.cr>
Repository: CRAN
Date/Publication: 2025-02-12 20:30:02 UTC

Exploratory Data Analysis System

Description

Performs an exploratory data analysis through a 'shiny' interface. It includes basic methods such as the mean, median, mode, normality test, among others. It also includes clustering techniques such as Principal Components Analysis, Hierarchical Clustering and the K-Means Method.

Details

Package: discoveR
Type: Package
Version: 3.1.7
Date: 2025-02-12
License: GPL (>=2)

Author(s)

Maintainer: Oldemar Rodriguez Rojas <oldemar.rodriguez@ucr.ac.cr>

See Also

Useful links:


Calculate inter-class inertia

Description

Calculate inter-class inertia

Usage

BP(DF, clusters)

Arguments

DF

a data.frame object.

clusters

a vector specifying the cluster of each individual.

Value

numeric

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

m <- hclust(dist(iris[, -5]))
BP(iris[, -5], cutree(m, 3))


Calculate intra-class inertia

Description

Calculate intra-class inertia

Usage

WP(DF, clusters)

Arguments

DF

a data.frame object.

clusters

a vector specifying the cluster of each individual.

Value

numeric

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

m <- hclust(dist(iris[, -5]))
WP(iris[, -5], cutree(m, 3))


Calculation of the center of clusters

Description

Calculation of the center of clusters

Usage

calc.centros(data, clusters)

Arguments

data

a data.frame object.

clusters

a vector specifying the cluster of each individual.

Value

list

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

clusters <- factor(kmeans(iris[, -5], 3)$cluster)
calc.centros(iris[, -5], clusters)


AFC biplot

Description

AFC biplot

Usage

e_afcbi(
  modelo,
  axes = c(1, 2),
  colorRow = "steelblue",
  colorCol = "forestgreen",
  cos2Row = 0,
  cos2Col = 0,
  colorRowCos = "firebrick",
  colorColCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class CA [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorRow

a color for the individuals well represented.

colorCol

a color for the variables well represented.

cos2Row

a numeric value from 0 to 1 specifying the quality of the individuals.

cos2Col

a numeric value from 0 to 1 specifying the quality of the variables.

colorRowCos

a color for the individuals badly represented.

colorColCos

a color for the variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples


  p <- FactoMineR::CA(iris[, -5], graph = FALSE)
  e_afcbi(p)



AFC biplot in 3D

Description

AFC biplot in 3D

Usage

e_afcbi_3D(
  modelo,
  axes = c(1, 2, 3),
  colorRow = "steelblue",
  colorCol = "forestgreen",
  cos2Row = 0,
  cos2Col = 0,
  colorRowCos = "firebrick",
  colorColCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class CA [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorRow

a color for the individuals well represented.

colorCol

a color for the variables well represented.

cos2Row

a numeric value from 0 to 1 specifying the quality of the individuals.

cos2Col

a numeric value from 0 to 1 specifying the quality of the variables.

colorRowCos

a color for individuals badly represented.

colorColCos

a color for variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples


  p <- FactoMineR::CA(iris[, -5], graph = FALSE)
  e_afcbi_3D(p)



AFC plot of variables

Description

AFC plot of variables

Usage

e_afccol(
  modelo,
  axes = c(1, 2),
  colorCol = "forestgreen",
  cos2 = 0,
  colorCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados")
)

Arguments

modelo

an object of class CA [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorCol

a color for the variables well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the variables.

colorCos

a color for the variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::CA(iris[, -5], graph = FALSE)
e_afccol(p)


AFC plot of variables in 3D

Description

AFC plot of variables in 3D

Usage

e_afccol_3D(
  modelo,
  axes = c(1, 2, 3),
  colorCol = "forestgreen",
  cos2 = 0,
  colorCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados")
)

Arguments

modelo

an object of class CA [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorCol

a color for the variables well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the variables.

colorCos

a color for variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::CA(iris[, -5], graph = FALSE)
e_afccol_3D(p)


AFCM biplot

Description

AFCM biplot

Usage

e_afcmbi(
  modelo,
  axes = c(1, 2),
  colorInd = "steelblue",
  colorVar = "forestgreen",
  cos2Ind = 0,
  cos2Var = 0,
  colorIndCos = "firebrick",
  colorVarCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

colorVar

a color for the variables well represented.

cos2Ind

a numeric value from 0 to 1 specifying the quality of the individuals.

cos2Var

a numeric value from 0 to 1 specifying the quality of the variables.

colorIndCos

a color for the individuals badly represented.

colorVarCos

a color for the variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmbi(p)


AFCM biplot in 3D

Description

AFCM biplot in 3D

Usage

e_afcmbi_3D(
  modelo,
  axes = c(1, 2, 3),
  colorInd = "steelblue",
  colorVar = "forestgreen",
  cos2Ind = 0,
  cos2Var = 0,
  colorIndCos = "firebrick",
  colorVarCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

colorVar

a color for the variables well represented.

cos2Ind

a numeric value from 0 to 1 specifying the quality of the individuals.

cos2Var

a numeric value from 0 to 1 specifying the quality of the variables.

colorIndCos

a color for individuals badly represented.

colorVarCos

a color for variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmbi_3D(p)


AFCM plot of categories

Description

AFCM plot of categories

Usage

e_afcmcat(
  modelo,
  axes = c(1, 2),
  colorCat = "forestgreen",
  cos2 = 0,
  colorCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados")
)

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorCat

a color for the categories well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the categories.

colorCos

a color for the categories badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmcat(p)


AFCM plot of categories in 3D

Description

AFCM plot of categories in 3D

Usage

e_afcmcat_3D(
  modelo,
  axes = c(1, 2, 3),
  colorCat = "forestgreen",
  cos2 = 0,
  colorCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados")
)

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorCat

a color for the categories well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the categories.

colorCos

a color for categories badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmcat_3D(p)


AFCM plot of individuals

Description

AFCM plot of individuals

Usage

e_afcmind(
  modelo,
  axes = c(1, 2),
  colorInd = "steelblue",
  cos2 = 0,
  colorCos = "firebrick",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the individuals.

colorCos

a color for individuals badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmind(p)


AFCM plot of individuals in 3D

Description

AFCM plot of individuals in 3D

Usage

e_afcmind_3D(
  modelo,
  axes = c(1, 2, 3),
  colorInd = "steelblue",
  cos2 = 0,
  colorCos = "firebrick",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the individuals.

colorCos

a color for individuals badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmind_3D(p)


AFCM plot of variables

Description

AFCM plot of variables

Usage

e_afcmvar(modelo, axes = c(1, 2), colorVar = "forestgreen")

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorVar

a color for the variables.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmvar(p)


AFCM plot of variables in 3D

Description

AFCM plot of variables in 3D

Usage

e_afcmvar_3D(modelo, axes = c(1, 2, 3), colorVar = "forestgreen")

Arguments

modelo

an object of class AFCM [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorVar

a color for the variables well represented.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

data("poison", package = "FactoMineR")
poison.active <- poison[1:55, 5:15]
p <- FactoMineR::MCA(poison.active, graph = FALSE)
e_afcmvar_3D(p)


AFC plot of individuals

Description

AFC plot of individuals

Usage

e_afcrow(
  modelo,
  axes = c(1, 2),
  colorRow = "steelblue",
  cos2 = 0,
  colorCos = "firebrick",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class CA [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorRow

a color for the individuals well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the individuals.

colorCos

a color for individuals badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::CA(iris[, -5], graph = FALSE)
e_afcrow(p)


AFC plot of individuals in 3D

Description

AFC plot of individuals in 3D

Usage

e_afcrow_3D(
  modelo,
  axes = c(1, 2, 3),
  colorRow = "steelblue",
  cos2 = 0,
  colorCos = "firebrick",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = T
)

Arguments

modelo

an object of class CA [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorRow

a color for the individuals well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the individuals.

colorCos

a color for individuals badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::CA(iris[, -5], graph = FALSE)
e_afcrow_3D(p)


Balloonplot

Description

Balloonplot

Usage

e_balloon(datos)

Arguments

datos

a data frame object.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

e_balloon(iris)


Barplot for categoric variable by clusters.

Description

Barplot for categoric variable by clusters.

Usage

e_cat(clusters, var, colores = NULL, escalar = T)

Arguments

clusters

a vector specifying the cluster of each individual.

var

a factor column of a data.frame.

colores

a vector of color for each cluster.

escalar

a boolean value specifying if use percentage or real values.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

clusters <- factor(kmeans(iris[, -5], 3)$cluster)
e_cat(clusters, iris[, 5], colores = c("steelblue", "pink", "forestgreen"))


Horizontal representation for centers of clusters.

Description

Horizontal representation for centers of clusters.

Usage

e_horiz(centros, colores = NULL)

Arguments

centros

a data.frame object with the centers of the clusters.

colores

a vector of color for each cluster.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

clusters <- factor(kmeans(iris[, -5], 3)$cluster)
c <- calc.centros(iris[, -5], clusters)
e_horiz(c$real, c("steelblue", "pink", "forestgreen"))


Inertia plot of clusterization

Description

Inertia plot of clusterization

Usage

e_inercia(
  data,
  titulos = c("Inercia", "Inercia Inter-Clase", "Inercia Inter-Clase")
)

Arguments

data

a data.frame object with the inertia values.

titulos

a character vector of length 3 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>


Jambu Elbow plot

Description

Jambu Elbow plot

Usage

e_jambu(data, max.clusters)

Arguments

data

a data.frame object.

max.clusters

a numeric value specifying the number of times to generate the model.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

e_jambu(iris[, -5], 10)


PCA plot of individuals colored by clusters

Description

PCA plot of individuals colored by clusters

Usage

e_mapa(pca.model, clusters, colores = NULL, ejes = c(1, 2), etq = F)

Arguments

pca.model

an object of class PCA [FactoMineR].

clusters

a vector specifying the cluster of each individual.

colores

a vector of color for each cluster.

ejes

a numeric vector of length 2 specifying the dimensions to be plotted.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
clusters <- factor(kmeans(iris[, -5], 3)$cluster)
e_mapa(p, clusters, c("steelblue", "pink", "forestgreen"), etq = FALSE)


PCA plot of individuals colored by clusters

Description

PCA plot of individuals colored by clusters

Usage

e_mapa_3D(pca.model, clusters, colores = NULL, ejes = c(1, 2, 3), etq = F)

Arguments

pca.model

an object of class PCA [FactoMineR].

clusters

a vector specifying the cluster of each individual.

colores

a vector of color for each cluster.

ejes

a numeric vector of length 3 specifying the dimensions to be plotted.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
clusters <- factor(kmeans(iris[, -5], 3)$cluster)
e_mapa_3D(p, clusters, c("steelblue", "pink", "forestgreen"), etq = FALSE)


PCA biplot

Description

PCA biplot

Usage

e_pcabi(
  modelo,
  axes = c(1, 2),
  colorInd = "steelblue",
  colorVar = "forestgreen",
  cos2Ind = 0,
  cos2Var = 0,
  colorIndCos = "firebrick",
  colorVarCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = F
)

Arguments

modelo

an object of class PCA [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

colorVar

a color for the variables well represented.

cos2Ind

a numeric value from 0 to 1 specifying the quality of the individuals.

cos2Var

a numeric value from 0 to 1 specifying the quality of the variables.

colorIndCos

a color for the individuals badly represented.

colorVarCos

a color for the variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
e_pcabi(p)


PCA biplot in 3D

Description

PCA biplot in 3D

Usage

e_pcabi_3D(
  modelo,
  axes = c(1, 2, 3),
  colorInd = "steelblue",
  colorVar = "forestgreen",
  cos2Ind = 0,
  cos2Var = 0,
  colorIndCos = "firebrick",
  colorVarCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = F
)

Arguments

modelo

an object of class PCA [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

colorVar

a color for the variables well represented.

cos2Ind

a numeric value from 0 to 1 specifying the quality of the individuals.

cos2Var

a numeric value from 0 to 1 specifying the quality of the variables.

colorIndCos

a color for individuals badly represented.

colorVarCos

a color for variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
e_pcabi_3D(p)


PCA plot of individuals

Description

PCA plot of individuals

Usage

e_pcaind(
  modelo,
  axes = c(1, 2),
  colorInd = "steelblue",
  cos2 = 0,
  colorCos = "firebrick",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = F
)

Arguments

modelo

an object of class PCA [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the individuals.

colorCos

a color for individuals badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
e_pcaind(p)


PCA plot of individuals in 3D

Description

PCA plot of individuals in 3D

Usage

e_pcaind_3D(
  modelo,
  axes = c(1, 2, 3),
  colorInd = "steelblue",
  cos2 = 0,
  colorCos = "firebrick",
  titulos = c("Bien Representados", "Mal Representados"),
  etq = F
)

Arguments

modelo

an object of class PCA [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorInd

a color for the individuals well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the individuals.

colorCos

a color for individuals badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

etq

a boolean, whether to add label to graph or not.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
e_pcaind_3D(p)


PCA plot of variables

Description

PCA plot of variables

Usage

e_pcavar(
  modelo,
  axes = c(1, 2),
  colorVar = "forestgreen",
  cos2 = 0,
  colorCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados")
)

Arguments

modelo

an object of class PCA [FactoMineR].

axes

a numeric vector of length 2 specifying the dimensions to be plotted.

colorVar

a color for the variables well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the variables.

colorCos

a color for the variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
e_pcavar(p)


PCA plot of variables in 3D

Description

PCA plot of variables in 3D

Usage

e_pcavar_3D(
  modelo,
  axes = c(1, 2, 3),
  colorVar = "forestgreen",
  cos2 = 0,
  colorCos = "darkorchid",
  titulos = c("Bien Representados", "Mal Representados")
)

Arguments

modelo

an object of class PCA [FactoMineR].

axes

a numeric vector of length 3 specifying the dimensions to be plotted.

colorVar

a color for the variables well represented.

cos2

a numeric value from 0 to 1 specifying the quality of the variables.

colorCos

a color for variables badly represented.

titulos

a character vector of length 2 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

p <- FactoMineR::PCA(iris[, -5], graph = FALSE)
e_pcavar_3D(p)


Radar representation for centers of clusters.

Description

Radar representation for centers of clusters.

Usage

e_radar(centros, colores = NULL)

Arguments

centros

a data.frame object with the centers of the clusters.

colores

a vector of color for each cluster.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

clusters <- factor(kmeans(iris[, -5], 3)$cluster)
c <- calc.centros(iris[, -5], clusters)
e_radar(c$porcentual, c("steelblue", "pink", "forestgreen"))


Silhouette plot

Description

Silhouette plot

Usage

e_silhouette(data, max.clusters)

Arguments

data

a data.frame object.

max.clusters

a numeric value specifying the number of times to generate the model.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

e_silhouette(iris[, -5], 10)


Vertical representation for centers of clusters.

Description

Vertical representation for centers of clusters.

Usage

e_vert(centros, colores = NULL)

Arguments

centros

a data.frame object with the centers of the clusters.

colores

a vector of color for each cluster.

Value

echarts4r plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

clusters <- factor(kmeans(iris[, -5], 3)$cluster)
c <- calc.centros(iris[, -5], clusters)
e_vert(c$real, c("steelblue", "pink", "forestgreen"))


Dendrogram plot

Description

Dendrogram plot

Usage

gg_dendrograma(model, k, colors = NULL)

Arguments

model

an object of class hclust.

k

a vector specifying the cluster of each individual.

colors

a vector of color for each cluster.

Value

ggplot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>


Calculate total inertia

Description

Calculate total inertia

Usage

inercia.total(DF)

Arguments

DF

a data.frame object.

Value

numeric

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>


acp Server Function

Description

acp Server Function

Usage

mod_acp_server(id, updateData, codedioma)

cj Server Function

Description

cj Server Function

Usage

mod_cj_server(id, updateData, codedioma)

kmedias Server Function

Description

kmedias Server Function

Usage

mod_kmedias_server(id, updateData, codedioma)

Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(...)

Arguments

...

A series of options to be used inside the app.

Examples

if(interactive()) {
  run_app()
}


These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.