The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

dimensio

R-CMD-check codecov CodeFactor Dependencies

r-universe CRAN Version CRAN checks CRAN Downloads

Project Status: Active – The project has reached a stable, usable state and is being actively developed.

DOI

Overview

Simple Principal Components Analysis (PCA; see vignette("pca")) and (Multiple) Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). This package provides S4 classes and methods to compute, extract, summarize and visualize results of multivariate data analysis. It also includes methods for partial bootstrap validation.

There are many very good packages for multivariate data analysis (such as FactoMineR, ade4, vegan or ca, all extended by FactoExtra). dimensio is designed to be as simple as possible, providing all the necessary tools to explore the results of the analysis.


To cite dimensio in publications use:

Frerebeau N (2025). dimensio: Multivariate Data Analysis. Université Bordeaux Montaigne, Pessac, France. doi:10.5281/zenodo.4478530 https://doi.org/10.5281/zenodo.4478530, R package version 0.11.0, https://packages.tesselle.org/dimensio/.

This package is a part of the tesselle project https://www.tesselle.org.

Installation

You can install the released version of dimensio from CRAN with:

install.packages("dimensio")

And the development version from GitHub with:

# install.packages("remotes")
remotes::install_github("tesselle/dimensio")

Usage

## Load package
library(dimensio)

Compute

## Load data
data(iris)

## Compute PCA
X <- pca(iris, center = TRUE, scale = TRUE, sup_quali = "Species")

Extract

dimensio provides several methods to extract the results:

Visualize

The package allows to quickly visualize the results:

The viz_*() functions allow to highlight additional information by varying different graphical elements (color, transparency, shape and size of symbols…).

## Form biplot
biplot(X, type = "form")

## Highlight species
viz_individuals(
  x = X, 
  extra_quali = iris$Species,
  color = c("#004488", "#DDAA33", "#BB5566"),
  ellipse = list(type = "tolerance", level = 0.95) # Add ellipses
)

## Highlight petal length
viz_individuals(
  x = X,
  extra_quanti = iris$Petal.Length,
  color = color("iridescent")(255), 
  size = c(1, 2)
)

## Plot variables factor map
viz_variables(X)

## Scree plot
screeplot(X, eigenvalues = FALSE, cumulative = TRUE)

Translation

This package provides translations of user-facing communications, like messages, warnings and errors, and graphical elements (axis labels). The preferred language is by default taken from the locale. This can be overridden by setting of the environment variable LANGUAGE (you only need to do this once per session):

Sys.setenv(LANGUAGE = "<language code>")

Languages currently available are English (en) and French (fr).

Contributing

Please note that the dimensio project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

References

Aitchison, John, and Michael Greenacre. 2002. “Biplots of Compositional Data.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 51 (4): 375–92. https://doi.org/10.1111/1467-9876.00275.
Gower, J. C. 1966. “Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis.” Biometrika 53 (3-4): 325–38. https://doi.org/10.1093/biomet/53.3-4.325.
Greenacre, Michael J. 1984. Theory and Applications of Correspondence Analysis. London ; Orlando, Fla: Academic Press.
———. 2007. Correspondence Analysis in Practice. Seconde edition. Interdisciplinary Statistics Series. Boca Raton: Chapman & Hall/CRC.
———. 2010. Biplots in Practice. Bilbao: Fundación BBVA.
Lebart, Ludovic, Marie Piron, and Alain Morineau. 2006. Statistique exploratoire multidimensionnelle : Visualisations et inférences en fouilles de données.
Lockyear, Kris. 2013. “Applying Bootstrapped Correspondence Analysis to Archaeological Data.” Journal of Archaeological Science 40 (12): 4744–53. https://doi.org/10.1016/j.jas.2012.08.035.
Ringrose, T. J. 1992. “Bootstrapping and Correspondence Analysis in Archaeology.” Journal of Archaeological Science 19 (6): 615–29. https://doi.org/10.1016/0305-4403(92)90032-X.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.