The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of did2s is to estimate TWFE models without running into the problem of staggered treatment adoption.
For common issues, see this issue: https://github.com/kylebutts/did2s/issues/12
You can install did2s from CRAN with:
install.packages("did2s")
To install the development version, run the following:
::install_github("kylebutts/did2s") devtools
For details on the methodology, view this vignette
To view the documentation, type ?did2s
into the
console.
The main function is did2s
which estimates the two-stage
did procedure. This function requires the following options:
yname
: the outcome variablefirst_stage
: formula for first stage, can include fixed
effects and covariates, but do not include treatment variable(s)!second_stage
: This should be the treatment variable or
in the case of event studies, treatment variables.treatment
: This has to be the 0/1 treatment variable
that marks when treatment turns on for a unit. If you suspect
anticipation, see note above for accounting for this.cluster_var
: Which variables to cluster onOptional options:
weights
: Optional variable to run a weighted first- and
second-stage regressionsbootstrap
: Should standard errors be bootstrapped
instead? Default is False.n_bootstraps
: How many clustered bootstraps to perform
for standard errors. Default is 250.did2s returns a list with two objects:
I will load example data from the package and plot the average outcome among the groups.
# Automatically loads fixest
library(did2s)
#> Loading required package: fixest
#> did2s (v1.0.2). For more information on the methodology, visit <https://www.kylebutts.github.io/did2s>
#>
#> To cite did2s in publications use:
#>
#> Butts, Kyle (2021). did2s: Two-Stage Difference-in-Differences
#> Following Gardner (2021). R package version 1.0.2.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {did2s: Two-Stage Difference-in-Differences Following Gardner (2021)},
#> author = {Kyle Butts},
#> year = {2021},
#> url = {https://github.com/kylebutts/did2s/},
#> }
# Load Data from R package
data("df_het", package = "did2s")
Here is a plot of the average outcome variable for each of the groups:
# Mean for treatment group-year
<- aggregate(df_het$dep_var, by=list(g = df_het$g, year = df_het$year), FUN = mean)
agg
$g <- as.character(agg$g)
agg$g <- ifelse(agg$g == "0", "Never Treated", agg$g)
agg
<- agg[agg$g == "Never Treated", ]
never <- agg[agg$g == "2000", ]
g1 <- agg[agg$g == "2010", ]
g2
plot(0, 0, xlim = c(1990,2020), ylim = c(4,7.2), type = "n",
main = "Data-generating Process", ylab = "Outcome", xlab = "Year")
abline(v = c(1999.5, 2009.5), lty = 2)
lines(never$year, never$x, col = "#8e549f", type = "b", pch = 15)
lines(g1$year, g1$x, col = "#497eb3", type = "b", pch = 17)
lines(g2$year, g2$x, col = "#d2382c", type = "b", pch = 16)
legend(x=1990, y=7.1, col = c("#8e549f", "#497eb3", "#d2382c"),
pch = c(15, 17, 16),
legend = c("Never Treated", "2000", "2010"))
First, lets estimate a static did. There are two things to note here.
First, note that I can use fixest::feols
formula including
the |
for specifying fixed effects and
fixest::i
for improved factor variable support. Second,
note that did2s
returns a fixest
estimate
object, so fixest::etable
, fixest::coefplot
,
and fixest::iplot
all work as expected.
# Static
<- did2s(df_het,
static yname = "dep_var", first_stage = ~ 0 | state + year,
second_stage = ~i(treat, ref=FALSE), treatment = "treat",
cluster_var = "state")
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | state + year`
#> - second stage formula `~ i(treat, ref = FALSE)`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`
::etable(static)
fixest#> static
#> Dependent Var.: dep_var
#>
#> treat = TRUE 2.152*** (0.0476)
#> _______________ _________________
#> S.E. type Custom
#> Observations 46,500
#> R2 0.33790
#> Adj. R2 0.33790
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This is very close to the true treatment effect of ~2.23.
Then, let’s estimate an event study did. Note that relative year has
a value of Inf
for never treated, so I put this as a
reference in the second stage formula.
# Event Study
<- did2s(df_het,
es yname = "dep_var", first_stage = ~ 0 | state + year,
second_stage = ~i(rel_year, ref=c(-1, Inf)), treatment = "treat",
cluster_var = "state")
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | state + year`
#> - second stage formula `~ i(rel_year, ref = c(-1, Inf))`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`
And plot the results:
::iplot(es, main = "Event study: Staggered treatment", xlab = "Relative time to treatment", col = "steelblue", ref.line = -0.5)
fixest
# Add the (mean) true effects
= head(tapply((df_het$te + df_het$te_dynamic), df_het$rel_year, mean), -1)
true_effects points(-20:20, true_effects, pch = 20, col = "black")
# Legend
legend(x=-20, y=3, col = c("steelblue", "black"), pch = c(20, 20),
legend = c("Two-stage estimate", "True effect"))
= feols(dep_var ~ i(rel_year, ref=c(-1, Inf)) | unit + year, data = df_het)
twfe
::iplot(list(es, twfe), sep = 0.2, ref.line = -0.5,
fixestcol = c("steelblue", "#82b446"), pt.pch = c(20, 18),
xlab = "Relative time to treatment",
main = "Event study: Staggered treatment (comparison)")
# Legend
legend(x=-20, y=3, col = c("steelblue", "#82b446"), pch = c(20, 18),
legend = c("Two-stage estimate", "TWFE"))
If you use this package to produce scientific or commercial publications, please cite according to:
citation(package = "did2s")
#>
#> To cite did2s in publications use:
#>
#> Butts, Kyle (2021). did2s: Two-Stage Difference-in-Differences
#> Following Gardner (2021). R package version 1.0.2.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {did2s: Two-Stage Difference-in-Differences Following Gardner (2021)},
#> author = {Kyle Butts},
#> year = {2021},
#> url = {https://github.com/kylebutts/did2s/},
#> }
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.