The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
depower provides a convenient framework to simulate, test, power, and visualize data for differential expression studies with lognormal or negative binomial outcomes. Supported designs are two-sample comparisons of both independent and dependent outcomes. Power may be summarized in the context of controlling the per-family error rate or family-wise error rate.
# Install from CRAN
install.packages("depower")
# Or the development version from bitbucket
::install_bitbucket("bklamer/depower") remotes
library(depower)
Estimate power to detect the ratio of means for independent two-sample negative binomial data.
set.seed(1234)
<- sim_nb(
power_nb n1 = 30,
n2 = 30,
mean1 = 15,
ratio = c(2, 2.5),
dispersion1 = 1,
dispersion2 = 2,
nsims = 200
|>
) power()
power_nb#> # A tibble: 2 × 12
#> n1 n2 mean1 mean2 ratio dispersion1 dispersion2 distribution nsims test alpha
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl>
#> 1 30 30 15 30 2 1 2 Independent … 200 NB W… 0.05
#> 2 30 30 15 37.5 2.5 1 2 Independent … 200 NB W… 0.05
#> # ℹ 1 more variable: power <dbl>
plot(power_nb)
Estimate power to detect the ratio of means for bivariate negative binomial data.
set.seed(1234)
<- sim_bnb(
power_bnb n = 30,
mean1 = 15,
ratio = c(1.2, 1.3),
dispersion = 1,
nsims = 300
|>
) power()
power_bnb#> # A tibble: 2 × 11
#> n1 n2 mean1 mean2 ratio dispersion1 distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 30 15 18 1.2 1 Dependent two-samp… 300 BNB … 0.05 0.833
#> 2 30 30 15 19.5 1.3 1 Dependent two-samp… 300 BNB … 0.05 0.987
plot(power_bnb)
Estimate power to detect the geometric ratio of means for independent two-sample lognormal data.
set.seed(1234)
<- sim_log_lognormal(
power_ind_lognormal n1 = 30,
n2 = 30,
ratio = c(1.3, 1.5),
cv1 = 0.4,
cv2 = 0.4,
nsims = 500
|>
) power()
power_ind_lognormal#> # A tibble: 2 × 11
#> n1 n2 ratio cv1 cv2 cor distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 30 1.3 0.4 0.4 0 Independent two-sample l… 500 Welc… 0.05 0.718
#> 2 30 30 1.5 0.4 0.4 0 Independent two-sample l… 500 Welc… 0.05 0.978
plot(power_ind_lognormal)
Estimate power to detect the geometric mean ratio for dependent two-sample lognormal data.
set.seed(1234)
<- sim_log_lognormal(
power_dep_lognormal n1 = 30,
n2 = 30,
ratio = c(1.3, 1.5),
cv1 = 0.4,
cv2 = 0.4,
cor = 0.3,
nsims = 500
|>
) power()
power_dep_lognormal#> # A tibble: 2 × 11
#> n1 n2 ratio cv1 cv2 cor distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 30 1.3 0.4 0.4 0.3 Dependent two-sample log… 500 Pair… 0.05 0.848
#> 2 30 30 1.5 0.4 0.4 0.3 Dependent two-sample log… 500 Pair… 0.05 0.998
plot(power_dep_lognormal)
Estimate power to detect the geometric mean for one-sample lognormal data.
set.seed(1234)
<- sim_log_lognormal(
power_one_lognormal n1 = 30,
ratio = c(1.3, 1.5),
cv1 = 0.4,
nsims = 500
|>
) power()
power_one_lognormal#> # A tibble: 2 × 8
#> n1 ratio cv1 distribution nsims test alpha power
#> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 30 1.3 0.4 One-sample log(lognormal) 500 One-sample t-Test 0.05 0.96
#> 2 30 1.5 0.4 One-sample log(lognormal) 500 One-sample t-Test 0.05 1
plot(power_one_lognormal)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.