The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This article describes how to cut study SDTM data using a modular approach to enable any further study or project specific customization.
To start, all SDTM data to be cut needs to be stored in a list.
The next step is to create the DCUT dataset containing the datacut date and description.
dcut <- create_dcut(
dataset_ds = source_data$ds,
ds_date_var = DSSTDTC,
filter = DSDECOD == "RANDOMIZATION",
cut_date = "2022-06-04",
cut_description = "Clinical Cutoff Date"
)
USUBJID | DCUTDTC | DCUTDTM | DCUTDESC |
---|---|---|---|
AB12345-001 | 2022-06-04 | 2022-06-04 23:59:59 | Clinical Cutoff Date |
AB12345-002 | 2022-06-04 | 2022-06-04 23:59:59 | Clinical Cutoff Date |
AB12345-003 | 2022-06-04 | 2022-06-04 23:59:59 | Clinical Cutoff Date |
AB12345-004 | 2022-06-04 | 2022-06-04 23:59:59 | Clinical Cutoff Date |
If any pre-processing of datasets is needed, for example in the case of FA, where there are multiple date variables, this should be done next.
source_data$fa <- source_data$fa %>%
mutate(DCUT_TEMP_FAXDTC = case_when(
FASTDTC != "" ~ FASTDTC,
FADTC != "" ~ FADTC,
TRUE ~ as.character(NA)
))
USUBJID | FASTDTC | FADTC | DCUT_TEMP_FAXDTC |
---|---|---|---|
AB12345-001 | 2022-06-01 | 2022-06-01 | |
AB12345-002 | 2022-06-30 | 2022-06-30 | |
AB12345-003 | 2022-07-01 | 2022-07-01 | |
AB12345-004 | 2022-05-04 | 2022-05-04 | |
AB12345-005 | 2022-12-01 | 2022-12-01 |
We’ll next specify the cut types for each dataset (patient cut, date cut or no cut) and in the case of date cut which date variable should be used.
Next we’ll apply the patient cut.
This adds on temporary flag variables indicating which observations will be removed, for example for SC:
USUBJID | SCORRES | DCUT_TEMP_REMOVE |
---|---|---|
AB12345-001 | A | NA |
AB12345-002 | B | NA |
AB12345-003 | C | NA |
AB12345-004 | D | NA |
AB12345-005 | E | Y |
Next we’ll apply the date cut.
date_cut_data <- pmap(
.l = list(
dataset_sdtm = source_data[date_cut_list[, 1]],
sdtm_date_var = syms(date_cut_list[, 2])
),
.f = date_cut,
dataset_cut = dcut,
cut_var = DCUTDTM
)
This again adds on temporary flag variables indicating which observations will be removed, for example for AE:
USUBJID | AETERM | AESTDTC | DCUT_TEMP_SDTM_DATE | DCUT_TEMP_DCUTDTM | DCUT_TEMP_REMOVE |
---|---|---|---|---|---|
AB12345-001 | AE1 | 2022-06-01 | 2022-06-01 | 2022-06-04 23:59:59 | NA |
AB12345-002 | AE2 | 2022-06-30 | 2022-06-30 | 2022-06-04 23:59:59 | Y |
AB12345-003 | AE3 | 2022-07-01 | 2022-07-01 | 2022-06-04 23:59:59 | Y |
AB12345-004 | AE4 | 2022-05-04 | 2022-05-04 | 2022-06-04 23:59:59 | NA |
AB12345-005 | AE5 | 2022-12-01 | 2022-12-01 | NA | Y |
Then lastly we’ll apply the special DM cut which also updates the death related variables.
This adds on temporary variables indicating any death records that would change as a result of applying a datacut:
USUBJID | DTHFL | DTHDTC | DCUT_TEMP_REMOVE | DCUT_TEMP_DTHDT | DCUT_TEMP_DCUTDTM | DCUT_TEMP_DTHCHANGE |
---|---|---|---|---|---|---|
AB12345-001 | Y | 2022-06-01 | NA | 2022-06-01 | 2022-06-04 23:59:59 | NA |
AB12345-002 | NA | NA | 2022-06-04 23:59:59 | NA | ||
AB12345-003 | Y | 2022-07-01 | NA | 2022-07-01 | 2022-06-04 23:59:59 | Y |
AB12345-004 | NA | NA | 2022-06-04 23:59:59 | NA | ||
AB12345-005 | Y | 2022-12-01 | Y | 2022-12-01 | NA | NA |
The last step is to create the RMD report, to summarize which patients and observations will be cut, and then apply the cut to strip out all observations flagged as to be removed.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.