The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This article is an example workflow of the modular approach where each section of the cut is explicitly called.
# Name: Datacut Template Code - Modular Approach
# Creating data to be cut ------------------------------------------------
library(datacutr)
library(admiraldev)
library(dplyr)
library(lubridate)
library(stringr)
library(purrr)
source_data <- list(
ds = datacutr_ds, dm = datacutr_dm, ae = datacutr_ae, sc = datacutr_sc,
lb = datacutr_lb, fa = datacutr_fa, ts = datacutr_ts
)
# Create DCUT ------------------------------------------------------------
dcut <- create_dcut(
dataset_ds = source_data$ds,
ds_date_var = DSSTDTC,
filter = DSDECOD == "RANDOMIZATION",
cut_date = "2022-06-04",
cut_description = "Clinical Cutoff Date"
)
# Pre-processing of FA ----------------------------------------------------
# Update FA
source_data$fa <- source_data$fa %>%
mutate(DCUT_TEMP_FAXDTC = case_when(
FASTDTC != "" ~ FASTDTC,
FADTC != "" ~ FADTC,
TRUE ~ as.character(NA)
))
# Specify cut types ------------------------------------------------------
# Patient cut - cut applied will only be for patients existing in DCUT
patient_cut_list <- c("sc", "ds")
# Date cut - cut applied will be both for patients existing in DCUT, and date cut against DCUTDTM
date_cut_list <- rbind(
c("ae", "AESTDTC"),
c("lb", "LBDTC"),
c("fa", "DCUT_TEMP_FAXDTC")
)
# No cut - data does not need to be cut
no_cut_list <- list(ts = source_data$ts)
# Create the cutting variables -------------------------------------------
# Conduct the patient cut ------------------------------------------------
patient_cut_data <- lapply(
source_data[patient_cut_list], pt_cut,
dataset_cut = dcut
)
# Conduct xxSTDTC or xxDTC Cut -------------------------------------------
date_cut_data <- pmap(
.l = list(
dataset_sdtm = source_data[date_cut_list[, 1]],
sdtm_date_var = syms(date_cut_list[, 2])
),
.f = date_cut,
dataset_cut = dcut,
cut_var = DCUTDTM
)
# Conduct DM special cut for DTH flags after DCUTDTM ---------------------
dm_cut <- special_dm_cut(
dataset_dm = source_data$dm,
dataset_cut = dcut,
cut_var = DCUTDTM
)
# Apply the cut --------------------------------
cut_data <- purrr::map(
c(patient_cut_data, date_cut_data, list(dm = dm_cut)),
apply_cut,
dcutvar = DCUT_TEMP_REMOVE,
dthchangevar = DCUT_TEMP_DTHCHANGE
)
# Add on data which is not cut
final_data <- c(cut_data, no_cut_list, list(dcut = dcut))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.