The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Access the Google Data Commons API V2. Data Commons provides programmatic access to statistical and demographic data from dozens of sources organized in a knowledge graph.
You can install datacommons
from CRAN via:
install.packages("datacommons")
You can install the development version of datacommons
from GitHub with:
# install.packages("pak")
::pak("tidy-intelligence/r-datacommons") pak
Load the package:
library(datacommons)
Get a free API key for Data Commons here. Set
the Data Commons API key as the DATACOMMONS_API_KEY
environment variable using the helper function and restart your R
session to load the key:
dc_set_api_key("YOUR_API_KEY")
If you want to use a custom
Data Commons instance, then you can also set the
DATACOMMONS_BASE_URL
environment varibale on the project or
global level:
dc_set_base_url("YOUR_BASE_URL")
Get a data frame with US population data from World Development Indicators:
<- dc_get_observations(
country_level date = "all",
variable_dcids = "Count_Person",
entity_dcids = "country/USA",
return_type = "data.frame",
filter_facet_id = 3981252704
)head(country_level, 5)
#> entity_dcid entity_name variable_dcid variable_name date
#> 1 country/USA United States of America Count_Person Total population 1960
#> 2 country/USA United States of America Count_Person Total population 1961
#> 3 country/USA United States of America Count_Person Total population 1962
#> 4 country/USA United States of America Count_Person Total population 1963
#> 5 country/USA United States of America Count_Person Total population 1964
#> value facet_id facet_name
#> 1 180671000 3981252704 WorldDevelopmentIndicators
#> 2 183691000 3981252704 WorldDevelopmentIndicators
#> 3 186538000 3981252704 WorldDevelopmentIndicators
#> 4 189242000 3981252704 WorldDevelopmentIndicators
#> 5 191889000 3981252704 WorldDevelopmentIndicators
If you want to get different population numbers from the US Census on the state level:
<- dc_get_observations(
state_level variable_dcids = "Count_Person",
date = 2021,
parent_entity = "country/USA",
entity_type = "State",
return_type = "data.frame",
filter_facet_id = 2176550201
)head(state_level, 5)
#> entity_dcid entity_name variable_dcid variable_name date value
#> 1 geoId/01 Alabama Count_Person Total population 2021 5039877
#> 2 geoId/02 Alaska Count_Person Total population 2021 732673
#> 3 geoId/04 Arizona Count_Person Total population 2021 7276316
#> 4 geoId/05 Arkansas Count_Person Total population 2021 3025891
#> 5 geoId/06 California Count_Person Total population 2021 39237836
#> facet_id facet_name
#> 1 2176550201 USCensusPEP_Annual_Population
#> 2 2176550201 USCensusPEP_Annual_Population
#> 3 2176550201 USCensusPEP_Annual_Population
#> 4 2176550201 USCensusPEP_Annual_Population
#> 5 2176550201 USCensusPEP_Annual_Population
Contributions to oecdoda
are welcome! If you’d like to
contribute, please follow these steps:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.