The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
data(mushroom)
head(mushroom)
#> Species Pileus.Cap.Width_min Pileus.Cap.Width_max Stipe.Length_min
#> 1 arorae 3 8 4
#> 2 arvenis 6 21 4
#> 3 benesi 4 8 5
#> 4 bernardii 7 6 4
#> 5 bisporus 5 12 2
#> 6 bitorquis 5 15 4
#> Stipe.Length_max Stipe.Thickness_min Stipe.Thickness_max Edibility
#> 1 9 0.5 2.5 U
#> 2 14 1.0 3.5 Y
#> 3 11 1.0 2.0 Y
#> 4 7 3.0 4.5 Y
#> 5 5 1.5 2.5 Y
#> 6 10 2.0 4.0 Y
Changes the format of the set variables in the data to conform to the RSDA format.
data
= the conventional dataframelocation
= the location of the set variable in the
datavar
= the name of the set variable in the data<- set_variable_format(data = mushroom, location = 8, var = "Species")
mushroom.set head(mushroom.set)
#> Species arorae arvenis benesi bernardii bisporus bitorquis califorinus
#> 1 23 1 0 0 0 0 0 0
#> 2 23 0 1 0 0 0 0 0
#> 3 23 0 0 1 0 0 0 0
#> 4 23 0 0 0 1 0 0 0
#> 5 23 0 0 0 0 1 0 0
#> 6 23 0 0 0 0 0 1 0
#> campestris comtulus cupreo-brunneus diminutives fuseo-fibrillosus
#> 1 0 0 0 0 0
#> 2 0 0 0 0 0
#> 3 0 0 0 0 0
#> 4 0 0 0 0 0
#> 5 0 0 0 0 0
#> 6 0 0 0 0 0
#> fuscovelatus hondensis lilaceps micromegathus praeclaresquamosus pattersonae
#> 1 0 0 0 0 0 0
#> 2 0 0 0 0 0 0
#> 3 0 0 0 0 0 0
#> 4 0 0 0 0 0 0
#> 5 0 0 0 0 0 0
#> 6 0 0 0 0 0 0
#> perobscurus semotus silvicola subrutilescens xanthodermus
#> 1 0 0 0 0 0
#> 2 0 0 0 0 0
#> 3 0 0 0 0 0
#> 4 0 0 0 0 0
#> 5 0 0 0 0 0
#> 6 0 0 0 0 0
#> Pileus.Cap.Width_min Pileus.Cap.Width_max Stipe.Length_min Stipe.Length_max
#> 1 3 8 4 9
#> 2 6 21 4 14
#> 3 4 8 5 11
#> 4 7 6 4 7
#> 5 5 12 2 5
#> 6 5 15 4 10
#> Stipe.Thickness_min Stipe.Thickness_max Edibility U Y T
#> 1 0.5 2.5 3 1 0 0
#> 2 1.0 3.5 3 0 1 0
#> 3 1.0 2.0 3 0 1 0
#> 4 3.0 4.5 3 0 1 0
#> 5 1.5 2.5 3 0 1 0
#> 6 2.0 4.0 3 0 1 0
Changes the format of the data to conform to RSDA format.
data
= the conventional dataframesym_type1
= the labels I means an interval variable,
and S means set variable in locationlocation
= the location of the sym_type in the
datasym_type2
= the labels I means an interval variable,
and S means set variable in varvar
= the name of the symbolic variable in the
data<- RSDA_format(data = mushroom.set, sym_type1 = c("I", "S"),
mushroom.tmp location = c(25, 31), sym_type2 = c("S", "I", "I"),
var = c("Species", "Stipe.Length_min", "Stipe.Thickness_min"))
head(mushroom.tmp)
#> $S Species arorae arvenis benesi bernardii bisporus bitorquis califorinus
#> 1 $S 23 1 0 0 0 0 0 0
#> 2 $S 23 0 1 0 0 0 0 0
#> 3 $S 23 0 0 1 0 0 0 0
#> 4 $S 23 0 0 0 1 0 0 0
#> 5 $S 23 0 0 0 0 1 0 0
#> 6 $S 23 0 0 0 0 0 1 0
#> campestris comtulus cupreo-brunneus diminutives fuseo-fibrillosus
#> 1 0 0 0 0 0
#> 2 0 0 0 0 0
#> 3 0 0 0 0 0
#> 4 0 0 0 0 0
#> 5 0 0 0 0 0
#> 6 0 0 0 0 0
#> fuscovelatus hondensis lilaceps micromegathus praeclaresquamosus pattersonae
#> 1 0 0 0 0 0 0
#> 2 0 0 0 0 0 0
#> 3 0 0 0 0 0 0
#> 4 0 0 0 0 0 0
#> 5 0 0 0 0 0 0
#> 6 0 0 0 0 0 0
#> perobscurus semotus silvicola subrutilescens xanthodermus $I
#> 1 0 0 0 0 0 $I
#> 2 0 0 0 0 0 $I
#> 3 0 0 0 0 0 $I
#> 4 0 0 0 0 0 $I
#> 5 0 0 0 0 0 $I
#> 6 0 0 0 0 0 $I
#> Pileus.Cap.Width_min Pileus.Cap.Width_max $I Stipe.Length_min
#> 1 3 8 $I 4
#> 2 6 21 $I 4
#> 3 4 8 $I 5
#> 4 7 6 $I 4
#> 5 5 12 $I 2
#> 6 5 15 $I 4
#> Stipe.Length_max $I Stipe.Thickness_min Stipe.Thickness_max $S Edibility U Y
#> 1 9 $I 0.5 2.5 $S 3 1 0
#> 2 14 $I 1.0 3.5 $S 3 0 1
#> 3 11 $I 1.0 2.0 $S 3 0 1
#> 4 7 $I 3.0 4.5 $S 3 0 1
#> 5 5 $I 1.5 2.5 $S 3 0 1
#> 6 10 $I 2.0 4.0 $S 3 0 1
#> T
#> 1 0
#> 2 0
#> 3 0
#> 4 0
#> 5 0
#> 6 0
Clean up variable names to conform to the RSDA format.
data
= the conventional dataframe<- clean_colnames(data = mushroom.tmp)
mushroom.clean head(mushroom.clean)
#> $S Species arorae arvenis benesi bernardii bisporus bitorquis califorinus
#> 1 $S 23 1 0 0 0 0 0 0
#> 2 $S 23 0 1 0 0 0 0 0
#> 3 $S 23 0 0 1 0 0 0 0
#> 4 $S 23 0 0 0 1 0 0 0
#> 5 $S 23 0 0 0 0 1 0 0
#> 6 $S 23 0 0 0 0 0 1 0
#> campestris comtulus cupreo-brunneus dutives fuseo-fibrillosus fuscovelatus
#> 1 0 0 0 0 0 0
#> 2 0 0 0 0 0 0
#> 3 0 0 0 0 0 0
#> 4 0 0 0 0 0 0
#> 5 0 0 0 0 0 0
#> 6 0 0 0 0 0 0
#> hondensis lilaceps micromegathus praeclaresquamosus pattersonae perobscurus
#> 1 0 0 0 0 0 0
#> 2 0 0 0 0 0 0
#> 3 0 0 0 0 0 0
#> 4 0 0 0 0 0 0
#> 5 0 0 0 0 0 0
#> 6 0 0 0 0 0 0
#> semotus silvicola subrutilescens xanthodermus $I Pileus.Cap.Width
#> 1 0 0 0 0 $I 3
#> 2 0 0 0 0 $I 6
#> 3 0 0 0 0 $I 4
#> 4 0 0 0 0 $I 7
#> 5 0 0 0 0 $I 5
#> 6 0 0 0 0 $I 5
#> Pileus.Cap.Width $I Stipe.Length Stipe.Length $I Stipe.Thickness
#> 1 8 $I 4 9 $I 0.5
#> 2 21 $I 4 14 $I 1.0
#> 3 8 $I 5 11 $I 1.0
#> 4 6 $I 4 7 $I 3.0
#> 5 12 $I 2 5 $I 1.5
#> 6 15 $I 4 10 $I 2.0
#> Stipe.Thickness $S Edibility U Y T
#> 1 2.5 $S 3 1 0 0
#> 2 3.5 $S 3 0 1 0
#> 3 2.0 $S 3 0 1 0
#> 4 4.5 $S 3 0 1 0
#> 5 2.5 $S 3 0 1 0
#> 6 4.0 $S 3 0 1 0
write_csv_table(data = mushroom.clean, file = 'mushroom_interval.csv')
<- read.sym.table(file = 'mushroom_interval.csv', header = T, sep = ';', dec = '.', row.names = 1)
mushroom.int head(mushroom.int)
#> # A tibble: 6 × 5
#> Species Pileus.Cap.Width Stipe.Length Stipe.Thickness Edibility
#> <symblc_s> <symblc_n> <symblc_n> <symblc_n> <symblc_s>
#> 1 {arorae} [3.00 : 8.00] [4.00 : 9.00] [0.50 : 2.50] {U}
#> 2 {arvenis} [6.00 : 21.00] [4.00 : 14.00] [1.00 : 3.50] {Y}
#> 3 {benesi} [4.00 : 8.00] [5.00 : 11.00] [1.00 : 2.00] {Y}
#> 4 {bernardii} [7.00 : 6.00] [4.00 : 7.00] [3.00 : 4.50] {Y}
#> 5 {bisporus} [5.00 : 12.00] [2.00 : 5.00] [1.50 : 2.50] {Y}
#> 6 {bitorquis} [5.00 : 15.00] [4.00 : 10.00] [2.00 : 4.00] {Y}
data(Abalone.iGAP)
head(Abalone.iGAP)
#> Length Diameter Height Whole
#> F-10-12 0.1275,0.9975 0.075, 0.815 -0.0175, 0.3125 -1.021, 3.883
#> F-13-15 0.1775,1.0275 0.125,0.825 0.025, 0.325 -0.8567, 3.6303
#> F-16-18 0.22,0.92 0.1725, 0.7425 0.0375, 0.3075 -0.5725, 3.1235
#> F-19-21 0.3725, 0.8425 0.2575, 0.6875 0.0825, 0.2525 -0.0368, 2.8443
#> F-23-24 0.275, 0.975 0.255, 0.755 0.09, 0.27 -0.303, 3.469
#> F-25-29 0.475, 0.775 0.405, 0.645 0.1625, 0.2325 0.915, 2.105
#> Shucked Viscera Shell
#> F-10-12 -0.6322, 2.1948 -0.2077, 0.7712 -0.258, 1.054
#> F-13-15 -0.4548, 1.7942 -0.1905, 0.7555 -0.269, 1.153
#> F-16-18 -0.244, 1.206 -0.1037, 0.6752 -0.3233, 1.4477
#> F-19-21 -0.16, 1.14 -0.033, 0.615 -0.1175, 1.1725
#> F-23-24 -0.2295, 1.3205 -0.13, 0.83 0.005, 0.945
#> F-25-29 0.134, 0.896 0.1467, 0.3798 0.45, 0.55
To convert iGAP files to CSV files.
data
= the conventional dataframe(iGAP format)location
= the location of the symbolic variable in the
data<- iGAP_to_MM(Abalone.iGAP, c(1, 2, 3, 4, 5, 6, 7))
Abalone head(Abalone)
#> Length_min Length_max Diameter_min Diameter_max Height_min Height_max
#> F-10-12 0.1275 0.9975 0.075 0.815 -0.0175 0.3125
#> F-13-15 0.1775 1.0275 0.125 0.825 0.025 0.325
#> F-16-18 0.22 0.92 0.1725 0.7425 0.0375 0.3075
#> F-19-21 0.3725 0.8425 0.2575 0.6875 0.0825 0.2525
#> F-23-24 0.275 0.975 0.255 0.755 0.09 0.27
#> F-25-29 0.475 0.775 0.405 0.645 0.1625 0.2325
#> Whole_min Whole_max Shucked_min Shucked_max Viscera_min Viscera_max
#> F-10-12 -1.021 3.883 -0.6322 2.1948 -0.2077 0.7712
#> F-13-15 -0.8567 3.6303 -0.4548 1.7942 -0.1905 0.7555
#> F-16-18 -0.5725 3.1235 -0.244 1.206 -0.1037 0.6752
#> F-19-21 -0.0368 2.8443 -0.16 1.14 -0.033 0.615
#> F-23-24 -0.303 3.469 -0.2295 1.3205 -0.13 0.83
#> F-25-29 0.915 2.105 0.134 0.896 0.1467 0.3798
#> Shell_min Shell_max
#> F-10-12 -0.258 1.054
#> F-13-15 -0.269 1.153
#> F-16-18 -0.3233 1.4477
#> F-19-21 -0.1175 1.1725
#> F-23-24 0.005 0.945
#> F-25-29 0.45 0.55
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.