The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Below is an overview of the data analysis methods provided by the dad package, and a presentation of the type of data manipulated.
For more information on these elements, see: https://journal.r-project.org/archive/2021/RJ-2021-071/index.html
The dad package provides tools for analysing multi-group data. Such data consist of variables observed on individuals, these individuals being organised into groups (or occasions). Hence, there are three types of objects: groups, individuals and variables.
For the analysis of such data, a probability density function is associated to each group. Some methods dealing with these functions are implemented:
fmdsd
(continuous data) or
mdsdd
(discrete data)fhclustd
(continuous) or
hclustdd
(discrete)
fdiscd.misclass
(continuous) or
discdd.misclass
(discrete)fdiscd.predict
(continuous) or
discdd.predict
(discrete)In order to facilitate the work with these multi-group data, the
dad package uses objects of class "folder"
or "folderh"
. These objects are lists of data frames having
particular formats.
folder
Such objects are lists of data frames which have the same column names. Each data frame matches with an occasion (a group of individuals).
An object of class "folder"
is created by the functions
folder
or as.folder
(see their help in R).
Example: Ten rosebushes \(A\), \(B\), \(\dots\), \(J\) were evaluated by 14 assessors, at
three sessions, according to several descriptors including their shape
Sha
, their foliage thickness Den
and their
symmetry Sym
.
## Sha Den Sym rose
## 1 7.0 6.7 6.7 A
## 2 7.1 7.8 8.1 A
## 3 7.0 6.8 7.4 A
## 4 6.7 4.3 8.1 A
## 5 4.5 7.2 7.8 A
## 6 6.0 7.2 6.1 A
Coerce these data into an object of class "folder"
:
## $A
## Sha Den Sym
## 1 7.0 6.7 6.7
## 2 7.1 7.8 8.1
## 3 7.0 6.8 7.4
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $B
## Sha Den Sym
## 43 8.1 7.7 3.0
## 44 8.6 5.9 6.7
## 45 7.7 6.7 7.4
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $C
## Sha Den Sym
## 85 0.7 9.3 1.4
## 86 2.3 7.7 2.4
## 87 3.6 7.9 7.2
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $D
## Sha Den Sym
## 127 9.2 1.8 9.0
## 128 9.0 2.3 9.2
## 129 6.9 2.6 7.6
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $E
## Sha Den Sym
## 169 5.6 1.7 8.2
## 170 7.5 3.4 8.6
## 171 5.8 3.9 5.8
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $F
## Sha Den Sym
## 211 8.3 8.0 6.5
## 212 8.4 7.8 3.3
## 213 9.2 8.2 7.6
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $G
## Sha Den Sym
## 253 8.6 2.0 5.4
## 254 8.5 2.3 7.9
## 255 7.6 3.5 7.1
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $H
## Sha Den Sym
## 295 6.5 4.3 2.6
## 296 6.6 2.9 2.9
## 297 8.4 5.1 6.4
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $I
## Sha Den Sym
## 337 4.9 6.5 7.6
## 338 5.8 6.6 7.9
## 339 4.3 5.6 6.0
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## $J
## Sha Den Sym
## 379 4.9 5.2 8.9
## 380 4.6 8.1 8.6
## 381 3.5 7.8 7.4
## [ reached 'max' / getOption("max.print") -- omitted 39 rows ]
##
## attr(,"class")
## [1] "folder"
## attr(,"same.rows")
## [1] FALSE
folderh
Objects of class "folderh"
can be used to avoid
redundancies in the data.
In the most useful case, such objects are hierarchical lists of two
data frames df1
and df2
related by means of a
key which describes the ā1 to Nā relationship between the data
frames.
They are created by the function folderh
(see its help
in R for the case of three data frames or more).
Example: Data about 5 rosebushes
(roseflowers$variety
). For each rosebush, measures on
several flowers (roseflowers$flower
).
Build an object of class "folderh"
:
## $df1
## place rose variety
## 34 outdoors 34 v1
## 40 outdoors 40 v4
## 60 outdoors 60 v3
## 66 glasshouse 66 v3
## 68 glasshouse 68 v4
##
## $df2
## rose numflower diameter height nleaves
## 1 34 1 94.5 57.0 8
## 2 34 2 89.5 54.0 10
## 3 40 1 57.0 21.5 9
## 4 40 2 52.5 20.5 5
## 5 40 3 51.5 14.0 7
## 6 60 1 53.0 23.0 4
## 7 60 2 52.0 24.5 9
## 8 66 1 35.0 9.5 4
## 9 66 2 35.0 14.0 6
## 10 66 3 36.0 13.5 7
## 11 68 1 45.5 19.5 10
##
## attr(,"class")
## [1] "folderh"
## attr(,"keys")
## [1] "rose"
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.