The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Vignette_tneh

Juste Goungounga, Olayidé Boussari, Laura Botta, Valérie Jooste

library(curesurv)
#> Le chargement a nécessité le package : stringr
#> Le chargement a nécessité le package : survival

How to analyse survival data using Time-To-Null exccess hazard model (TNEH model)

Additive hazard assumption in net survival setting

When the cause of death is unknown, the most common method to estimate the cancer-related survival is net survival. Its estimation assumes that the observed hazard \(\lambda_{obs}\) is equal to the sum of the known background mortality hazard in the general population \(\lambda_{pop}\) (obtained from national Statistic Institutes such as INSEE in France) and the excess hazard (due to cancer) \(\lambda_{exc}\). For one individual \(i\), this relation can be expressed as:

\[ \lambda_{obs}(t_i|z_i) = \lambda_{pop}(t_i+a_i|z_{Pi}) + \lambda_{exc}(t_i|z_i) \] where \(Z_P\subset Z\).

The cumulative observed hazard can be written as: \[ \Lambda_{obs}(t) = \Lambda_{pop}(t+a) + \Lambda_{exc}(t) \] and the net survival is obtained as following: \[ S_{n}(t) = \exp(-\Lambda_{exc}(t)) \]

TNEH model

The TNEH model is a relatively recent excess hazard model developed by Boussari et al. \(\\\)

The particularity of this model is that it enables the estimation, at the same time as the classical parameters of a model of the excess rate, of a quantity which is obtained by post-estimation by the classical models: it concerns the time after which the excess rate becomes null i.e. the cure point.

Instantaneous excess hazard

The excess hazard proposed can be expressed as following:

\[ \lambda_{exc}(t|z;\theta) = \left(\dfrac{t}{\tau(z;\tau*)}\right)^{\alpha(z;\alpha*)-1} \left(1 - \dfrac{t}{\tau(z;\tau*)}\right)^{\beta-1} 1_{\left\{0 \le t \le \tau(z;\tau*)\right\}} \]

where : \(\\\)

\(\tau(z;\tau*) > 0\) is the time to cure, depends on covariates z and vector of parameters \(\tau*\). It corresponds to the vector of parameters fitting the time-to-null excess hazard. \(\\\)

\(\alpha(z;\alpha*) > 0\) and \(\beta > 1\) are shape parameters. With \(\beta>1\), the excess hazard is forced to be null and continuous in \(\tau(z;\tau*)\). \(\\\)

The vector of parameters to be estimated is \(\theta = (\alpha*, \beta, \tau*)\) with \(\alpha(z;\alpha*) > 0\) .

Cumulative excess hazard

\[ \Lambda_{exc}(t|z;\theta) = \tau(z;\tau*) B \left( \alpha(z;\alpha*), \beta \right) F_{Be} \left( \dfrac{t}{\tau(z;\tau*)} ; \alpha(z;\alpha*) , \beta \right) \]

where

B is the beta function \(\\\) \(F_{Be}\) is the cumulative distribution function (cdf) of the beta distribution

Net survival

\[ S_n(t|z) = \exp(-\Lambda_{exc}(t|z)) = \exp\left(-\tau(z;\tau*) B \left( \alpha(z;\alpha*), \beta \right) F_{Be} \left( \dfrac{t}{\tau(z;\tau*)} ; \alpha(z;\alpha*),\beta \right)\right) \]

The cure fraction \(\pi\)

The cure fraction corresponds to the net survival at \(t = \tau\) in TNEH model. It can be expressed as:

\[ \pi(z|\theta) = \exp\left(-\Lambda_{exc}(\tau(z;\tau*)|z)\right) = \exp\left(-\tau(z;\tau*) B \left( \alpha(z;\alpha*), \beta \right)\right) \]

The probability Pi(t)

This quantity corresponds to the probability Pi(t) of being cured at a given time t after diagnosis knowing that he/she was alive up to time t. It can be expressed as following:

\[ Pi(t|z) = \dfrac{\pi(z|\theta)}{S_n(t|z)} = \exp \left( \tau(z;\tau*) \left( B \left( \dfrac{t}{\tau(z;\tau*)} ; \alpha(z;\alpha*) , \beta \right) - B(\alpha, \beta) \right) \right) \] To calculates the confidence intervals of \(Pi(t|z)\), can be obtained using the delta method. The application of this method requires the partial derivatives of \(Pi(t|z)\) with respect of the parameters of the model. This can be written as:

\[ \dfrac{\partial Pi(t|z)}{\partial \theta} = \dfrac{1}{S_n(t|z)^2} \left( \dfrac{\partial \pi(z|\theta)}{\partial \theta} S_n(t|z) - \dfrac{\partial S_n(t|z)}{\partial \theta} \pi(z|\theta) \right) \]

Fit of tneh model using R

Without covariates

fit_ad_tneh_nocov <- curesurv(Surv(time_obs, event) ~ 1,
                             pophaz = "ehazard",
                             cumpophaz = "cumehazard",
                             model = "nmixture", dist = "tneh",  
                             link_tau = "linear",
                             data = testiscancer,
                             method_opt = "L-BFGS-B")
#> init 5 5.5 5 lower 0 1 0 upper 100 100 100 
#> next evaluation with initial values =   2
fit_ad_tneh_nocov
#> Call:
#> curesurv(formula = Surv(time_obs, event) ~ 1, data = testiscancer, 
#>     pophaz = "ehazard", cumpophaz = "cumehazard", model = "nmixture", 
#>     dist = "tneh", link_tau = "linear", method_opt = "L-BFGS-B")
#> 
#>          coef se(coef)      z      p
#> alpha0 2.1841   0.1032 21.166 <2e-16
#> beta   4.4413   0.5178  8.577 <2e-16
#> tau0   5.1018   0.5397  9.452 <2e-16
#> 
#> Estimates and their 95% CI after back-transformation
#>        estimates   LCI   UCI
#> alpha0     2.184 1.982 2.386
#> beta       4.441 3.426 5.456
#> tau0       5.102 4.044 6.160
#> 
#> Cured proportion exp[-ζ0* B((α0+α*Z)β)] and its 95% CI
#> 
#>    estimates    LCI    UCI
#> π0    0.8474 0.7616 0.9042
#> 
#> log-likelihood: -2633.903 (for 3 degree(s) of freedom)
#>  AIC: 5273.806
#> 
#>   n= 2000 , number of events= 949
newdata1 <- with(testiscancer,
  expand.grid(event = 0, time_obs  = seq(0.001,10,0.001)))
p_28 <- predict(object = fit_ad_tneh_nocov, newdata = newdata1)

Plot of different estimators (hazard, survival, probability of being cured)

plot(p_28)

Cure fraction estimation precision

The confidence intervals at \(1-\alpha\) level for the cure fraction \(\pi\) can be written as:

\[ \left[\hat{\pi} \pm z_{1 - \alpha / 2} \sqrt{Var(\hat{\hat{\pi}})}\right] \] where \[ Var(\hat{\pi}) = \dfrac{\partial \hat{\pi}}{\partial \theta} Var(\theta) \left(\dfrac{\partial \hat{\pi}}{\partial \theta}\right)^T \]

Time-to-cure estimation

We search the time \(\text{t}=\text{TTC}_i\) from which \(\text{P}_i(t) = 1-\epsilon\). \(\epsilon\) can be fixed to 0.95.

The variance formula can be expressed as:

\[ Var(TTC) = Var(g(\theta;z_i)) \simeq \left(\dfrac{\partial P(t|z_i;\theta)}{\partial t}_{|t = TTC}\right)^{-2} Var(P(t|z_i;\theta))_{|t=TTC} \]

With covariates acting both on parameters tau and alpha

testiscancer$age_crmin <- (testiscancer$age- min(testiscancer$age)) /sd(testiscancer$age)

fit_m1_ad_tneh <- curesurv(Surv(time_obs, event) ~ z_tau(age_crmin) + 
                          z_alpha(age_crmin),
                          pophaz = "ehazard",
                          cumpophaz = "cumehazard",
                          model = "nmixture", dist = "tneh",
                          link_tau = "linear",
                          data = testiscancer,
                          method_opt = "L-BFGS-B")
#> init 5 2.5 5.5 5 -4 lower 0 -5 1 0 -5 upper 100 100 100 100 100
#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique
#> Warning in diag(varcov): NAs introduits lors de la conversion automatique
#> non convergence with inititial values 1 
#> next evaluation with initial values =   2 
#> init 7.5 -1.25 7.75 2.5 3 lower 0 -5 1 0 -5 upper 100 100 100 100 100 
#> next evaluation with initial values =   3

fit_m1_ad_tneh
#> Call:
#> curesurv(formula = Surv(time_obs, event) ~ z_tau(age_crmin) + 
#>     z_alpha(age_crmin), data = testiscancer, pophaz = "ehazard", 
#>     cumpophaz = "cumehazard", model = "nmixture", dist = "tneh", 
#>     link_tau = "linear", method_opt = "L-BFGS-B")
#> 
#>                         coef se(coef)      z        p
#> alpha0               2.87737  0.24078 11.950  < 2e-16
#> alpha_1_(age_crmin) -0.50128  0.07498 -6.685 2.30e-11
#> beta                 5.15005  1.04335  4.936 7.97e-07
#> tau0                 3.25831  0.55340  5.888 3.91e-09
#> tau_1_(age_crmin)    3.46300  1.23871  2.796  0.00518
#> 
#> Estimates and their 95% CI after back-transformation
#>                     estimates   LCI   UCI
#> alpha0                  2.877 2.405 3.349
#> alpha_1_(age_crmin)     2.376 2.229 2.523
#> beta                    5.150 3.105 7.195
#> tau0                    3.258 2.174 4.343
#> tau_1_(age_crmin)       6.721 4.293 9.149
#> 
#> Cured proportion exp[-(ζ0+ζ*Z)* B((α0+α*Z)β)] and its 95% CI
#> (For each Z of (age_crmin) the others are at reference level)
#> 
#>                                estimates    LCI    UCI
#> π0z_alpha0                        0.9675 0.7989 0.9949
#> π0z_alpha(age_crmin)              0.9601 0.8183 0.9689
#> π(age_crmin)z_alpha0              0.9341 0.6231 0.9900
#> π(age_crmin)z_alpha(age_crmin)    0.9227 0.6613 0.9356
#> 
#> log-likelihood: -2544.1 (for 5 degree(s) of freedom)
#>  AIC: 5098.2
#> 
#>   n= 2000 , number of events= 949
  #mean of age
newdata1 <- with(testiscancer, 
                 expand.grid(event = 0,
                             age_crmin = mean(age_crmin),
                             time_obs  = seq(0.001,10,0.1)))

 pred_agemean <- predict(object = fit_m1_ad_tneh, newdata = newdata1)
#max of age
newdata2 <- with(testiscancer, 
                  expand.grid(event = 0,
                              age_crmin = max(age_crmin),
                              time_obs  = seq(0.001,10,0.1)))

pred_agemax <- predict(object = fit_m1_ad_tneh, newdata = newdata2)
# predictions at time 2 years depending on age

   newdata3 <- with(testiscancer,
      expand.grid(event = 0, 
                  age_crmin = seq(min(testiscancer$age_crmin), 
                                  max(testiscancer$age_crmin), 0.1),
                  time_obs  = 2))

pred_age_val <- predict(object = fit_m1_ad_tneh, newdata = newdata3)

plot of net survival for mean and maximum age



par(mfrow = c(2, 2),
    cex = 1.0)
plot(pred_agemax$time,
    pred_agemax$ex_haz,
    type = "l",
    lty = 1,
    lwd = 2,
    xlab = "Time since diagnosis",
    ylab = "excess hazard")
lines(pred_agemean$time,
     pred_agemean$ex_haz,
     type = "l",
     lty = 2,
     lwd = 2)

legend("topright",
      horiz = FALSE,
      legend = c("hE(t) age.max = 79.9", "hE(t) age.mean = 50.8"),
      col = c("black", "black"),
      lty = c(1, 2, 1, 1, 2, 2))
grid()

plot(pred_agemax$time,
    pred_agemax$netsurv,
    type = "l",
    lty = 1,
    lwd = 2,
    ylim = c(0, 1),
    xlab = "Time since diagnosis",
    ylab = "net survival")
lines(pred_agemean$time,
     pred_agemean$netsurv,
     type = "l",
     lty = 2,
     lwd = 2)
legend("bottomleft",
       horiz = FALSE,
       legend = c("Sn(t) age.max = 79.9", "Sn(t) age.mean = 50.8"),
       col = c("black", "black"),
      lty = c(1, 2, 1, 1, 2, 2))
grid()

plot(pred_agemax$time,
    pred_agemax$pt_cure,
    type = "l",
    lty = 1,
    lwd = 2,
    ylim = c(0, 1), xlim = c(0,30),
    xlab = "Time since diagnosis",
    ylab = "probability of being cured P(t)")

lines(pred_agemean$time,
     pred_agemean$pt_cure,
     type = "l",
     lty = 2,
     lwd = 2)


abline(v = pred_agemean$tau[1],
      lty = 2,
      lwd = 2,
      col = "blue")
abline(v = pred_agemean$TTC[1],
       lty = 2,
       lwd = 2,
       col = "red")
abline(v = pred_agemax$tau[1],
       lty = 1,
       lwd = 2,
       col = "blue")
abline(v = pred_agemax$TTC[1],
       lty = 1,
       lwd = 2,
      col = "red")
grid()

legend("bottomright",
       horiz = FALSE,
       legend = c("P(t) age.max = 79.9",
                 "P(t) age.mean = 50.8",
                 "TNEH age.max = 79.9",
                 "TTC age.max = 79.9",
                 "TNEH age.mean = 50.8",
                 "TTC age.mean = 50.8"),
      col = c("black", "black", "blue", "red", "blue", "red"),
      lty = c(1, 2, 1, 1, 2, 2))

val_age <- seq(min(testiscancer$age_crmin),
               max(testiscancer$age_crmin),
               0.1) * sd(testiscancer$age) +  min(testiscancer$age)


pred_age_val <- predict(object = fit_m1_ad_tneh, newdata = newdata3)
par(mfrow=c(2,2))
 plot(val_age,
     pred_age_val$ex_haz, type = "l",
     lty=1, lwd=2,
     xlab = "age",
     ylab = "excess hazard")
grid()

 plot(val_age,
     pred_age_val$netsurv, type = "l", lty=1,
     lwd=2, xlab = "age", ylab = "net survival")
     grid()

 plot(val_age,
     pred_age_val$pt_cure, type = "l", lty=1, lwd=2,
     xlab = "age",
     ylab = "Pi(t)")
     grid()
par(mfrow=c(1,1))

With covariates acting only parameters adjusting the parameter of the time-to-null excess hazard tau only


#| echo: true
#| label: withtauonly
#| warning: false
#| message: false

fit_ad_tneh_covtau <- curesurv(
  Surv(time_obs, event) ~ z_tau(age_cr),
  pophaz = "ehazard",
  cumpophaz = "cumehazard",
  model = "nmixture",
  dist = "tneh",
  link_tau = "linear",
  data = testiscancer,
  method_opt = "L-BFGS-B"
)
#> init 5 5.5 5 -4 lower 0 1 0 -5 upper 100 100 100 100
#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique
#> Warning in diag(varcov): NAs introduits lors de la conversion automatique
#> non convergence with inititial values 1 
#> next evaluation with initial values =   2 
#> init 7.5 3.25 7.5 -11 lower 0 1 0 -5 upper 100 100 100 100
#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique

#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique
#> non convergence with inititial values 2 
#> next evaluation with initial values =   3 
#> init 2.5 7.75 2.5 3 lower 0 1 0 -5 upper 100 100 100 100
#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique

#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique
#> non convergence with inititial values 3 
#> next evaluation with initial values =   4 
#> init 3.75 4.375 6.25 -14.5 lower 0 1 0 -5 upper 100 100 100 100
#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique

#> Warning in diag(varcov_star): NAs introduits lors de la conversion automatique
#> non convergence with inititial values 4 
#> next evaluation with initial values =   5 
#> init 8.75 8.875 1.25 -0.5 lower 0 1 0 -5 upper 100 100 100 100 
#> next evaluation with initial values =   6
fit_ad_tneh_covtau
#> Call:
#> curesurv(formula = Surv(time_obs, event) ~ z_tau(age_cr), data = testiscancer, 
#>     pophaz = "ehazard", cumpophaz = "cumehazard", model = "nmixture", 
#>     dist = "tneh", link_tau = "linear", method_opt = "L-BFGS-B")
#> 
#>                  coef se(coef)      z        p
#> alpha0         1.9753   0.1299 15.206  < 2e-16
#> beta           5.3066   1.1286  4.702 2.58e-06
#> tau0           7.4380   1.8109  4.107 4.00e-05
#> tau_1_(age_cr) 2.3159   0.8529  2.715  0.00662
#> 
#> Estimates and their 95% CI after back-transformation
#>                estimates   LCI    UCI
#> alpha0             1.975 1.721  2.230
#> beta               5.307 3.095  7.519
#> tau0               7.438 3.889 10.987
#> tau_1_(age_cr)     9.754 8.082 11.426
#> 
#> Cured proportion exp[-(ζ0+ζ*Z)* B((α0+α*Z)β)] and its 95% CI
#> (For each Z of (age_cr) the others are at reference level)
#> 
#>           Estimates    LCI    UCI
#> π0            0.794 0.6535 0.8909
#> π(age_cr)     0.739 0.4130 0.8868
#> 
#> log-likelihood: -2610.768 (for 4 degree(s) of freedom)
#>  AIC: 5229.537
#> 
#>   n= 2000 , number of events= 949
newdata2 <- with(testiscancer,
                 expand.grid(event = 0, 
                             time_obs  = seq(0.001, 10, 0.001),
                             age_cr = c(-0.9577, -0.2751, 0.2849) ))
newdata2_1stqu <- newdata2[newdata2$age_cr==-0.9577,]
newdata2_2rdqu <- newdata2[newdata2$age_cr==-0.2751,]
newdata2_3rdqu <- newdata2[newdata2$age_cr==0.2849,]

p1stqu <- predict(object = fit_ad_tneh_covtau, newdata = newdata2_1stqu)
p2rdqu <- predict(object = fit_ad_tneh_covtau, newdata = newdata2_2rdqu)
p3rdqu <- predict(object = fit_ad_tneh_covtau, newdata = newdata2_3rdqu)
oldpar <- par(no.readonly = FALSE)
par(mfrow = c(2,2))
plot(p1stqu, 
     main = "Excess hazard for age 20", 
     fun = "haz")
plot(p2rdqu,
     fun = "haz",
     main = "Excess hazard for age 51")
plot(p3rdqu,
     fun = "haz",
     main = "Excess hazard for age 69")
par(mfrow = c(1,1))

par(oldpar)
#> Warning in par(oldpar): le paramètre graphique "cin" ne peut être changé
#> Warning in par(oldpar): le paramètre graphique "cra" ne peut être changé
#> Warning in par(oldpar): le paramètre graphique "csi" ne peut être changé
#> Warning in par(oldpar): le paramètre graphique "cxy" ne peut être changé
#> Warning in par(oldpar): le paramètre graphique "din" ne peut être changé
#> Warning in par(oldpar): le paramètre graphique "page" ne peut être changé

With covariates acting only on scale parameter alpha


#| echo: true
#| label: only_covariate_on_alpha
#| message: false
#| warning: false

fit_ad_tneh_covalpha <-
  curesurv(
    Surv(time_obs, event) ~ z_alpha(age_cr),
    pophaz = "ehazard",
    cumpophaz = "cumehazard",
    model = "nmixture",
    dist = "tneh",
    link_tau = "linear",
    data = testiscancer,
    method_opt = "L-BFGS-B"
  )
#> init 5 2.5 5.5 5 lower 0 -5 1 0 upper 100 100 100 100 
#> next evaluation with initial values =   2
fit_ad_tneh_covalpha
#> Call:
#> curesurv(formula = Surv(time_obs, event) ~ z_alpha(age_cr), data = testiscancer, 
#>     pophaz = "ehazard", cumpophaz = "cumehazard", model = "nmixture", 
#>     dist = "tneh", link_tau = "linear", method_opt = "L-BFGS-B")
#> 
#>                      coef se(coef)      z        p
#> alpha0            2.06862  0.11152 18.550  < 2e-16
#> alpha_1_(age_cr) -0.46785  0.06331 -7.389 1.48e-13
#> beta              4.77703  0.81573  5.856 4.74e-09
#> tau0              6.09881  1.11797  5.455 4.89e-08
#> 
#> Estimates and their 95% CI after back-transformation
#>                  estimates   LCI   UCI
#> alpha0               2.069 1.850 2.287
#> alpha_1_(age_cr)     1.601 1.477 1.725
#> beta                 4.777 3.178 6.376
#> tau0                 6.099 3.908 8.290
#> 
#> Cured proportion exp[-ζ0* B((α0+α*Z)β)] and its 95% CI
#> 
#>           estimates    LCI    UCI
#> π0           0.8181 0.4760 0.9485
#> π(age_cr)    0.7709 0.4124 0.7536
#> 
#> log-likelihood: -2586.138 (for 4 degree(s) of freedom)
#>  AIC: 5180.275
#> 
#>   n= 2000 , number of events= 949
p4_28 <- predict(object = fit_ad_tneh_covalpha,
                 newdata = newdata2_1stqu)
p4_50 <- predict(object = fit_ad_tneh_covalpha,
                 newdata = newdata2_2rdqu)
p4_74 <- predict(object = fit_ad_tneh_covalpha,
                 newdata = newdata2_2rdqu)

plot of estimation of probability Pi(t) of being cured at a given time t after diagnosis knowing that he/she was alive up to time t


#| echo: true
#| message: false
#| warning: false
#| include: true
#| fig.height: 15
#| fig.width: 15
par(mfrow = c(2,2))
plot(p4_28, fun = "pt_cure")
plot(p4_50, fun = "pt_cure")
plot(p4_74, fun = "pt_cure")
par(mfrow = c(1,1))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.