The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
csutil::easy_split(letters[1:20], size_of_each_group = 3)
#> $`1`
#> [1] "a" "b" "c"
#>
#> $`2`
#> [1] "d" "e" "f"
#>
#> $`3`
#> [1] "g" "h" "i"
#>
#> $`4`
#> [1] "j" "k" "l"
#>
#> $`5`
#> [1] "m" "n" "o"
#>
#> $`6`
#> [1] "p" "q" "r"
#>
#> $`7`
#> [1] "s" "t"
csutil::easy_split(letters[1:20], number_of_groups = 3)
#> $`1`
#> [1] "a" "b" "c" "d" "e" "f" "g"
#>
#> $`2`
#> [1] "h" "i" "j" "k" "l" "m" "n"
#>
#> $`3`
#> [1] "o" "p" "q" "r" "s" "t"x <- list(
list(
"a" = data.frame("v1"=1),
"b" = data.frame("v2"=3)
),
list(
"a" = data.frame("v1"=10),
"b" = data.frame("v2"=30),
"d" = data.frame("v3"=50)
)
)
print(x)
#> [[1]]
#> [[1]]$a
#> v1
#> 1 1
#>
#> [[1]]$b
#> v2
#> 1 3
#>
#>
#> [[2]]
#> [[2]]$a
#> v1
#> 1 10
#>
#> [[2]]$b
#> v2
#> 1 30
#>
#> [[2]]$d
#> v3
#> 1 50
csutil::unnest_dfs_within_list_of_fully_named_lists(x)
#> $a
#> v1
#> 1: 1
#> 2: 10
#>
#> $b
#> v2
#> 1: 3
#> 2: 30
#>
#> $d
#> v3
#> 1: 50csutil::is_fully_named_list(list(1))
#> [1] FALSE
csutil::is_fully_named_list(list("a"=1))
#> [1] TRUE
csutil::is_all_list_elements_null_or_df(list(data.frame()))
#> [1] TRUE
csutil::is_all_list_elements_null_or_df(list(1, NULL))
#> [1] FALSE
csutil::is_all_list_elements_null_or_list(list(1, NULL))
#> [1] FALSE
csutil::is_all_list_elements_null_or_list(list(list(), NULL))
#> [1] TRUE
csutil::is_all_list_elements_null_or_fully_named_list(list(list(), NULL))
#> [1] FALSE
csutil::is_all_list_elements_null_or_fully_named_list(list(list("a" = 1), NULL))
#> [1] TRUEThis function extracts the unique input values, applies the given function to it to create a hash table (containing unique input/output combinations), and then matches the original input to the hash table to obtain the desired output.
This can dramatically speed up computation if there is a lot of data and a limited amount of unique values.
input <- rep(seq(as.Date("2000-01-01"), as.Date("2020-01-01"), 1), 1000)
a1 <- Sys.time()
z <- format(input, "%Y")
a2 <- Sys.time()
a2 - a1
#> Time difference of 2.071753 secs
b1 <- Sys.time()
z <- csutil::apply_fn_via_hash_table(
input,
format,
"%Y"
)
b2 <- Sys.time()
b2 - b1
#> Time difference of 0.6172273 secsThese binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.