The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
csfmt_rts_data_v1
(vignette("csfmt_rts_data_v1", package = "cstidy")
) is a
data format for real-time surveillance.
<- cstidy::generate_test_data()
d ::set_csfmt_rts_data_v1(d)
cstidy
# Looking at the dataset
d[]#> granularity_time granularity_geo country_iso3 location_code border age
#> 1: isoyearweek county nor county_nor42 NA <NA>
#> 2: isoyearweek county nor county_nor32 NA <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA>
#> 4: isoyearweek county nor county_nor56 NA <NA>
#> 5: isoyearweek county nor county_nor34 NA <NA>
#> 6: isoyearweek county nor county_nor15 NA <NA>
#> 7: isoyearweek county nor county_nor18 NA <NA>
#> 8: isoyearweek county nor county_nor03 NA <NA>
#> 9: isoyearweek county nor county_nor11 NA <NA>
#> 10: isoyearweek county nor county_nor40 NA <NA>
#> 11: isoyearweek county nor county_nor55 NA <NA>
#> 12: isoyearweek county nor county_nor50 NA <NA>
#> 13: isoyearweek county nor county_nor39 NA <NA>
#> 14: isoyearweek county nor county_nor46 NA <NA>
#> 15: isoyearweek county nor county_nor31 NA <NA>
#> 16: isoyearweek county nor county_nor42 NA total
#> 17: isoyearweek county nor county_nor32 NA total
#> 18: isoyearweek county nor county_nor33 NA total
#> 19: isoyearweek county nor county_nor56 NA total
#> 20: isoyearweek county nor county_nor34 NA total
#> 21: isoyearweek county nor county_nor15 NA total
#> 22: isoyearweek county nor county_nor18 NA total
#> 23: isoyearweek county nor county_nor03 NA total
#> 24: isoyearweek county nor county_nor11 NA total
#> 25: isoyearweek county nor county_nor40 NA total
#> 26: isoyearweek county nor county_nor55 NA total
#> 27: isoyearweek county nor county_nor50 NA total
#> 28: isoyearweek county nor county_nor39 NA total
#> 29: isoyearweek county nor county_nor46 NA total
#> 30: isoyearweek county nor county_nor31 NA total
#> 31: isoyearweek county nor county_nor42 NA 000_005
#> 32: isoyearweek county nor county_nor32 NA 000_005
#> 33: isoyearweek county nor county_nor33 NA 000_005
#> 34: isoyearweek county nor county_nor56 NA 000_005
#> 35: isoyearweek county nor county_nor34 NA 000_005
#> 36: isoyearweek county nor county_nor15 NA 000_005
#> 37: isoyearweek county nor county_nor18 NA 000_005
#> 38: isoyearweek county nor county_nor03 NA 000_005
#> 39: isoyearweek county nor county_nor11 NA 000_005
#> 40: isoyearweek county nor county_nor40 NA 000_005
#> 41: isoyearweek county nor county_nor55 NA 000_005
#> 42: isoyearweek county nor county_nor50 NA 000_005
#> 43: isoyearweek county nor county_nor39 NA 000_005
#> 44: isoyearweek county nor county_nor46 NA 000_005
#> 45: isoyearweek county nor county_nor31 NA 000_005
#> granularity_time granularity_geo country_iso3 location_code border age
#> sex isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 2: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 3: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 4: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 5: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 6: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 7: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 8: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 9: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 10: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 11: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 12: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 13: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 14: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 15: <NA> 2022 3 2022-03 2021/2022 26 NA NA
#> 16: total 2022 3 2022-03 2021/2022 26 NA NA
#> 17: total 2022 3 2022-03 2021/2022 26 NA NA
#> 18: total 2022 3 2022-03 2021/2022 26 NA NA
#> 19: total 2022 3 2022-03 2021/2022 26 NA NA
#> 20: total 2022 3 2022-03 2021/2022 26 NA NA
#> 21: total 2022 3 2022-03 2021/2022 26 NA NA
#> 22: total 2022 3 2022-03 2021/2022 26 NA NA
#> 23: total 2022 3 2022-03 2021/2022 26 NA NA
#> 24: total 2022 3 2022-03 2021/2022 26 NA NA
#> 25: total 2022 3 2022-03 2021/2022 26 NA NA
#> 26: total 2022 3 2022-03 2021/2022 26 NA NA
#> 27: total 2022 3 2022-03 2021/2022 26 NA NA
#> 28: total 2022 3 2022-03 2021/2022 26 NA NA
#> 29: total 2022 3 2022-03 2021/2022 26 NA NA
#> 30: total 2022 3 2022-03 2021/2022 26 NA NA
#> 31: total 2022 3 2022-03 2021/2022 26 NA NA
#> 32: total 2022 3 2022-03 2021/2022 26 NA NA
#> 33: total 2022 3 2022-03 2021/2022 26 NA NA
#> 34: total 2022 3 2022-03 2021/2022 26 NA NA
#> 35: total 2022 3 2022-03 2021/2022 26 NA NA
#> 36: total 2022 3 2022-03 2021/2022 26 NA NA
#> 37: total 2022 3 2022-03 2021/2022 26 NA NA
#> 38: total 2022 3 2022-03 2021/2022 26 NA NA
#> 39: total 2022 3 2022-03 2021/2022 26 NA NA
#> 40: total 2022 3 2022-03 2021/2022 26 NA NA
#> 41: total 2022 3 2022-03 2021/2022 26 NA NA
#> 42: total 2022 3 2022-03 2021/2022 26 NA NA
#> 43: total 2022 3 2022-03 2021/2022 26 NA NA
#> 44: total 2022 3 2022-03 2021/2022 26 NA NA
#> 45: total 2022 3 2022-03 2021/2022 26 NA NA
#> sex isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> calyearmonth date deaths_n
#> 1: <NA> 2022-01-23 4
#> 2: <NA> 2022-01-23 4
#> 3: <NA> 2022-01-23 8
#> 4: <NA> 2022-01-23 3
#> 5: <NA> 2022-01-23 4
#> 6: <NA> 2022-01-23 4
#> 7: <NA> 2022-01-23 7
#> 8: <NA> 2022-01-23 3
#> 9: <NA> 2022-01-23 6
#> 10: <NA> 2022-01-23 10
#> 11: <NA> 2022-01-23 5
#> 12: <NA> 2022-01-23 5
#> 13: <NA> 2022-01-23 4
#> 14: <NA> 2022-01-23 4
#> 15: <NA> 2022-01-23 6
#> 16: <NA> 2022-01-23 4
#> 17: <NA> 2022-01-23 4
#> 18: <NA> 2022-01-23 8
#> 19: <NA> 2022-01-23 3
#> 20: <NA> 2022-01-23 4
#> 21: <NA> 2022-01-23 4
#> 22: <NA> 2022-01-23 7
#> 23: <NA> 2022-01-23 3
#> 24: <NA> 2022-01-23 6
#> 25: <NA> 2022-01-23 10
#> 26: <NA> 2022-01-23 5
#> 27: <NA> 2022-01-23 5
#> 28: <NA> 2022-01-23 4
#> 29: <NA> 2022-01-23 4
#> 30: <NA> 2022-01-23 6
#> 31: <NA> 2022-01-23 4
#> 32: <NA> 2022-01-23 4
#> 33: <NA> 2022-01-23 8
#> 34: <NA> 2022-01-23 3
#> 35: <NA> 2022-01-23 4
#> 36: <NA> 2022-01-23 4
#> 37: <NA> 2022-01-23 7
#> 38: <NA> 2022-01-23 3
#> 39: <NA> 2022-01-23 6
#> 40: <NA> 2022-01-23 10
#> 41: <NA> 2022-01-23 5
#> 42: <NA> 2022-01-23 5
#> 43: <NA> 2022-01-23 4
#> 44: <NA> 2022-01-23 4
#> 45: <NA> 2022-01-23 6
#> calyearmonth date deaths_n
csfmt_rts_data_v1
does smart assignment for time and
geography.
When the variables in bold are assigned using
:=
, the listed variables will be automatically imputed.
location_code:
isoyear:
isoyearweek:
date:
<- cstidy::generate_test_data()[1:5]
d ::set_csfmt_rts_data_v1(d)
cstidy
# Looking at the dataset
d[]#> granularity_time granularity_geo country_iso3 location_code border age sex
#> 1: isoyearweek county nor county_nor42 NA <NA> <NA>
#> 2: isoyearweek county nor county_nor32 NA <NA> <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA> <NA>
#> 4: isoyearweek county nor county_nor56 NA <NA> <NA>
#> 5: isoyearweek county nor county_nor34 NA <NA> <NA>
#> isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: 2022 3 2022-03 2021/2022 26 NA NA
#> 2: 2022 3 2022-03 2021/2022 26 NA NA
#> 3: 2022 3 2022-03 2021/2022 26 NA NA
#> 4: 2022 3 2022-03 2021/2022 26 NA NA
#> 5: 2022 3 2022-03 2021/2022 26 NA NA
#> calyearmonth date deaths_n
#> 1: <NA> 2022-01-23 8
#> 2: <NA> 2022-01-23 7
#> 3: <NA> 2022-01-23 6
#> 4: <NA> 2022-01-23 2
#> 5: <NA> 2022-01-23 7
# Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change)
1,isoyearweek := "2021-01"]
d[
d#> granularity_time granularity_geo country_iso3 location_code border age sex
#> 1: isoyearweek county nor county_nor42 NA <NA> <NA>
#> 2: isoyearweek county nor county_nor32 NA <NA> <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA> <NA>
#> 4: isoyearweek county nor county_nor56 NA <NA> <NA>
#> 5: isoyearweek county nor county_nor34 NA <NA> <NA>
#> isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: 2021 1 2021-01 2020/2021 24 NA NA
#> 2: 2022 3 2022-03 2021/2022 26 NA NA
#> 3: 2022 3 2022-03 2021/2022 26 NA NA
#> 4: 2022 3 2022-03 2021/2022 26 NA NA
#> 5: 2022 3 2022-03 2021/2022 26 NA NA
#> calyearmonth date deaths_n
#> 1: <NA> 2021-01-10 8
#> 2: <NA> 2022-01-23 7
#> 3: <NA> 2022-01-23 6
#> 4: <NA> 2022-01-23 2
#> 5: <NA> 2022-01-23 7
# Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change)
2,isoyear := 2019]
d[
d#> granularity_time granularity_geo country_iso3 location_code border age sex
#> 1: isoyearweek county nor county_nor42 NA <NA> <NA>
#> 2: isoyear county nor county_nor32 NA <NA> <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA> <NA>
#> 4: isoyearweek county nor county_nor56 NA <NA> <NA>
#> 5: isoyearweek county nor county_nor34 NA <NA> <NA>
#> isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: 2021 1 2021-01 2020/2021 24 NA NA
#> 2: 2019 52 2019-52 <NA> NA NA NA
#> 3: 2022 3 2022-03 2021/2022 26 NA NA
#> 4: 2022 3 2022-03 2021/2022 26 NA NA
#> 5: 2022 3 2022-03 2021/2022 26 NA NA
#> calyearmonth date deaths_n
#> 1: <NA> 2021-01-10 8
#> 2: <NA> 2019-12-29 7
#> 3: <NA> 2022-01-23 6
#> 4: <NA> 2022-01-23 2
#> 5: <NA> 2022-01-23 7
# Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change)
4:5,date := as.Date("2020-01-01")]
d[
d#> granularity_time granularity_geo country_iso3 location_code border age sex
#> 1: isoyearweek county nor county_nor42 NA <NA> <NA>
#> 2: isoyear county nor county_nor32 NA <NA> <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA> <NA>
#> 4: date county nor county_nor56 NA <NA> <NA>
#> 5: date county nor county_nor34 NA <NA> <NA>
#> isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: 2021 1 2021-01 2020/2021 24 NA NA
#> 2: 2019 52 2019-52 <NA> NA NA NA
#> 3: 2022 3 2022-03 2021/2022 26 NA NA
#> 4: 2020 1 2020-01 2019/2020 24 2020 1
#> 5: 2020 1 2020-01 2019/2020 24 2020 1
#> calyearmonth date deaths_n
#> 1: <NA> 2021-01-10 8
#> 2: <NA> 2019-12-29 7
#> 3: <NA> 2022-01-23 6
#> 4: 2020-M01 2020-01-01 2
#> 5: 2020-M01 2020-01-01 7
# Smart assignment fails when multiple time columns are set
1,c("isoyear","isoyearweek") := .(2021,"2021-01")]
d[#> Warning in `[.csfmt_rts_data_v1`(d, 1, `:=`(c("isoyear", "isoyearweek"), :
#> Multiple time variables specified. Smart-assignment disabled.
d#> granularity_time granularity_geo country_iso3 location_code border age sex
#> 1: isoyearweek county nor county_nor42 NA <NA> <NA>
#> 2: isoyear county nor county_nor32 NA <NA> <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA> <NA>
#> 4: date county nor county_nor56 NA <NA> <NA>
#> 5: date county nor county_nor34 NA <NA> <NA>
#> isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: 2021 1 2021-01 2020/2021 24 NA NA
#> 2: 2019 52 2019-52 <NA> NA NA NA
#> 3: 2022 3 2022-03 2021/2022 26 NA NA
#> 4: 2020 1 2020-01 2019/2020 24 2020 1
#> 5: 2020 1 2020-01 2019/2020 24 2020 1
#> calyearmonth date deaths_n
#> 1: <NA> 2021-01-10 8
#> 2: <NA> 2019-12-29 7
#> 3: <NA> 2022-01-23 6
#> 4: 2020-M01 2020-01-01 2
#> 5: 2020-M01 2020-01-01 7
# Smart assignment of geo columns
1,c("location_code") := .("norge")]
d[
d#> granularity_time granularity_geo country_iso3 location_code border age sex
#> 1: isoyearweek nation nor norge NA <NA> <NA>
#> 2: isoyear county nor county_nor32 NA <NA> <NA>
#> 3: isoyearweek county nor county_nor33 NA <NA> <NA>
#> 4: date county nor county_nor56 NA <NA> <NA>
#> 5: date county nor county_nor34 NA <NA> <NA>
#> isoyear isoweek isoyearweek season seasonweek calyear calmonth
#> 1: 2021 1 2021-01 2020/2021 24 NA NA
#> 2: 2019 52 2019-52 <NA> NA NA NA
#> 3: 2022 3 2022-03 2021/2022 26 NA NA
#> 4: 2020 1 2020-01 2019/2020 24 2020 1
#> 5: 2020 1 2020-01 2019/2020 24 2020 1
#> calyearmonth date deaths_n
#> 1: <NA> 2021-01-10 8
#> 2: <NA> 2019-12-29 7
#> 3: <NA> 2022-01-23 6
#> 4: 2020-M01 2020-01-01 2
#> 5: 2020-M01 2020-01-01 7
# Collapsing down to different levels, and healing the dataset
# (so that it can be worked on further with regards to real time surveillance)
deaths_n = sum(deaths_n), location_code = "norge"), keyby=.(granularity_time)] %>%
d[, .(::set_csfmt_rts_data_v1(create_unified_columns = FALSE) %>%
cstidyprint()
#> granularity_time deaths_n location_code date
#> 1: date 9 norge <NA>
#> 2: isoyear 7 norge <NA>
#> 3: isoyearweek 14 norge <NA>
# Collapsing to different levels, and removing the class csfmt_rts_data_v1 because
# it is going to be used in new output/analyses
deaths_n = sum(deaths_n), location_code = "norge"), keyby=.(granularity_time)] %>%
d[, .(::remove_class_csfmt_rts_data() %>%
cstidyprint()
#> granularity_time deaths_n location_code
#> 1: date 9 norge
#> 2: isoyear 7 norge
#> 3: isoyearweek 14 norge
We need a way to easily summarize the data structure of a dataset.
::generate_test_data() %>%
cstidy::set_csfmt_rts_data_v1() %>%
cstidysummary()
#>
#> granularity_time
#> ✅ No errors
#>
#> granularity_geo
#> ✅ No errors
#>
#> country_iso3
#> ✅ No errors
#>
#> location_code
#> ✅ No errors
#>
#> border
#> ❌ Errors:
#> - NA exists (not allowed)
#>
#> age
#> ✅ No errors
#>
#> sex
#> ✅ No errors
#>
#> isoyear
#> ✅ No errors
#>
#> isoweek
#> ✅ No errors
#>
#> isoyearweek
#> ✅ No errors
#>
#> season
#> ✅ No errors
#>
#> seasonweek
#> ✅ No errors
#>
#> calyear
#> ✅ No errors
#>
#> calmonth
#> ✅ No errors
#>
#> calyearmonth
#> ✅ No errors
#>
#> date
#> ✅ No errors
#> granularity_time (character):
#> - isoyearweek (n = 45)
#> granularity_geo (character):
#> - county (n = 45)
#> country_iso3 (character):
#> - nor (n = 45)
#> location_code (character)
#> border (integer):
#> - <NA> (n = 45)
#> age (character):
#> - 000_005 (n = 15)
#> - <NA> (n = 15)
#> - total (n = 15)
#> sex (character):
#> - <NA> (n = 15)
#> - total (n = 30)
#> isoyear (integer):
#> - 2022 (n = 45)
#> isoweek (integer)
#> isoyearweek (character)
#> season (character):
#> - 2021/2022 (n = 45)
#> seasonweek (numeric)
#> calyear (integer)
#> calmonth (integer)
#> calyearmonth (character)
#> date (Date)
#> deaths_n (integer)
We need a way to easily summarize the data structure of one column inside a dataset.
::generate_test_data() %>%
cstidy::set_csfmt_rts_data_v1() %>%
cstidy::identify_data_structure("deaths_n") %>%
cstidyplot()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.