The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction

csfmt_rts_data_v2

csfmt_rts_data_v2 (vignette("csfmt_rts_data_v2", package = "cstidy")) is a data format for real-time surveillance.

d <- cstidy::generate_test_data()
cstidy::set_csfmt_rts_data_v2(d)

# Looking at the dataset
d[]
#>     granularity_time granularity_geo country_iso3 location_code border     age
#>               <char>          <char>       <char>        <char>  <int>  <char>
#>  1:      isoyearweek          county          nor  county_nor42     NA    <NA>
#>  2:      isoyearweek          county          nor  county_nor32     NA    <NA>
#>  3:      isoyearweek          county          nor  county_nor33     NA    <NA>
#>  4:      isoyearweek          county          nor  county_nor56     NA    <NA>
#>  5:      isoyearweek          county          nor  county_nor34     NA    <NA>
#>  6:      isoyearweek          county          nor  county_nor15     NA    <NA>
#>  7:      isoyearweek          county          nor  county_nor18     NA    <NA>
#>  8:      isoyearweek          county          nor  county_nor03     NA    <NA>
#>  9:      isoyearweek          county          nor  county_nor11     NA    <NA>
#> 10:      isoyearweek          county          nor  county_nor40     NA    <NA>
#> 11:      isoyearweek          county          nor  county_nor55     NA    <NA>
#> 12:      isoyearweek          county          nor  county_nor50     NA    <NA>
#> 13:      isoyearweek          county          nor  county_nor39     NA    <NA>
#> 14:      isoyearweek          county          nor  county_nor46     NA    <NA>
#> 15:      isoyearweek          county          nor  county_nor31     NA    <NA>
#> 16:      isoyearweek          county          nor  county_nor42     NA   total
#> 17:      isoyearweek          county          nor  county_nor32     NA   total
#> 18:      isoyearweek          county          nor  county_nor33     NA   total
#> 19:      isoyearweek          county          nor  county_nor56     NA   total
#> 20:      isoyearweek          county          nor  county_nor34     NA   total
#> 21:      isoyearweek          county          nor  county_nor15     NA   total
#> 22:      isoyearweek          county          nor  county_nor18     NA   total
#> 23:      isoyearweek          county          nor  county_nor03     NA   total
#> 24:      isoyearweek          county          nor  county_nor11     NA   total
#> 25:      isoyearweek          county          nor  county_nor40     NA   total
#> 26:      isoyearweek          county          nor  county_nor55     NA   total
#> 27:      isoyearweek          county          nor  county_nor50     NA   total
#> 28:      isoyearweek          county          nor  county_nor39     NA   total
#> 29:      isoyearweek          county          nor  county_nor46     NA   total
#> 30:      isoyearweek          county          nor  county_nor31     NA   total
#> 31:      isoyearweek          county          nor  county_nor42     NA 000_005
#> 32:      isoyearweek          county          nor  county_nor32     NA 000_005
#> 33:      isoyearweek          county          nor  county_nor33     NA 000_005
#> 34:      isoyearweek          county          nor  county_nor56     NA 000_005
#> 35:      isoyearweek          county          nor  county_nor34     NA 000_005
#> 36:      isoyearweek          county          nor  county_nor15     NA 000_005
#> 37:      isoyearweek          county          nor  county_nor18     NA 000_005
#> 38:      isoyearweek          county          nor  county_nor03     NA 000_005
#> 39:      isoyearweek          county          nor  county_nor11     NA 000_005
#> 40:      isoyearweek          county          nor  county_nor40     NA 000_005
#> 41:      isoyearweek          county          nor  county_nor55     NA 000_005
#> 42:      isoyearweek          county          nor  county_nor50     NA 000_005
#> 43:      isoyearweek          county          nor  county_nor39     NA 000_005
#> 44:      isoyearweek          county          nor  county_nor46     NA 000_005
#> 45:      isoyearweek          county          nor  county_nor31     NA 000_005
#>     granularity_time granularity_geo country_iso3 location_code border     age
#>        sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>     <char>   <int>   <int>      <char>      <int>         <char>    <char>
#>  1:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  2:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  4:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  5:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  6:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  7:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  8:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>  9:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 10:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 11:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 12:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 13:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 14:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 15:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 16:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 17:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 18:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 19:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 20:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 21:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 22:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 23:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 24:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 25:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 26:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 27:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 28:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 29:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 30:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 31:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 32:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 33:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 34:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 35:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 36:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 37:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 38:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 39:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 40:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 41:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 42:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 43:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 44:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#> 45:  total    2022       3     2022-03          1        2022-Q1 2021/2022
#>        sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>     seasonweek calyear calmonth calyearmonth       date deaths_n
#>          <num>   <int>    <int>       <char>     <Date>    <int>
#>  1:         21      NA       NA         <NA> 2022-01-23        6
#>  2:         21      NA       NA         <NA> 2022-01-23        6
#>  3:         21      NA       NA         <NA> 2022-01-23        2
#>  4:         21      NA       NA         <NA> 2022-01-23        3
#>  5:         21      NA       NA         <NA> 2022-01-23        4
#>  6:         21      NA       NA         <NA> 2022-01-23        4
#>  7:         21      NA       NA         <NA> 2022-01-23        4
#>  8:         21      NA       NA         <NA> 2022-01-23        5
#>  9:         21      NA       NA         <NA> 2022-01-23        4
#> 10:         21      NA       NA         <NA> 2022-01-23        7
#> 11:         21      NA       NA         <NA> 2022-01-23        6
#> 12:         21      NA       NA         <NA> 2022-01-23        4
#> 13:         21      NA       NA         <NA> 2022-01-23        8
#> 14:         21      NA       NA         <NA> 2022-01-23        3
#> 15:         21      NA       NA         <NA> 2022-01-23        7
#> 16:         21      NA       NA         <NA> 2022-01-23        6
#> 17:         21      NA       NA         <NA> 2022-01-23        6
#> 18:         21      NA       NA         <NA> 2022-01-23        2
#> 19:         21      NA       NA         <NA> 2022-01-23        3
#> 20:         21      NA       NA         <NA> 2022-01-23        4
#> 21:         21      NA       NA         <NA> 2022-01-23        4
#> 22:         21      NA       NA         <NA> 2022-01-23        4
#> 23:         21      NA       NA         <NA> 2022-01-23        5
#> 24:         21      NA       NA         <NA> 2022-01-23        4
#> 25:         21      NA       NA         <NA> 2022-01-23        7
#> 26:         21      NA       NA         <NA> 2022-01-23        6
#> 27:         21      NA       NA         <NA> 2022-01-23        4
#> 28:         21      NA       NA         <NA> 2022-01-23        8
#> 29:         21      NA       NA         <NA> 2022-01-23        3
#> 30:         21      NA       NA         <NA> 2022-01-23        7
#> 31:         21      NA       NA         <NA> 2022-01-23        6
#> 32:         21      NA       NA         <NA> 2022-01-23        6
#> 33:         21      NA       NA         <NA> 2022-01-23        2
#> 34:         21      NA       NA         <NA> 2022-01-23        3
#> 35:         21      NA       NA         <NA> 2022-01-23        4
#> 36:         21      NA       NA         <NA> 2022-01-23        4
#> 37:         21      NA       NA         <NA> 2022-01-23        4
#> 38:         21      NA       NA         <NA> 2022-01-23        5
#> 39:         21      NA       NA         <NA> 2022-01-23        4
#> 40:         21      NA       NA         <NA> 2022-01-23        7
#> 41:         21      NA       NA         <NA> 2022-01-23        6
#> 42:         21      NA       NA         <NA> 2022-01-23        4
#> 43:         21      NA       NA         <NA> 2022-01-23        8
#> 44:         21      NA       NA         <NA> 2022-01-23        3
#> 45:         21      NA       NA         <NA> 2022-01-23        7
#>     seasonweek calyear calmonth calyearmonth       date deaths_n

Smart assignment

csfmt_rts_data_v2 does smart assignment for time and geography.

When the variables in bold are assigned using :=, the listed variables will be automatically imputed.

location_code:

isoyear:

isoyearweek:

date:

d <- cstidy::generate_test_data()[1:5]
cstidy::set_csfmt_rts_data_v2(d)

# Looking at the dataset
d[]
#>    granularity_time granularity_geo country_iso3 location_code border    age
#>              <char>          <char>       <char>        <char>  <int> <char>
#> 1:      isoyearweek          county          nor  county_nor42     NA   <NA>
#> 2:      isoyearweek          county          nor  county_nor32     NA   <NA>
#> 3:      isoyearweek          county          nor  county_nor33     NA   <NA>
#> 4:      isoyearweek          county          nor  county_nor56     NA   <NA>
#> 5:      isoyearweek          county          nor  county_nor34     NA   <NA>
#>       sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>    <char>   <int>   <int>      <char>      <int>         <char>    <char>
#> 1:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 2:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 4:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 5:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>    seasonweek calyear calmonth calyearmonth       date deaths_n
#>         <num>   <int>    <int>       <char>     <Date>    <int>
#> 1:         21      NA       NA         <NA> 2022-01-23        3
#> 2:         21      NA       NA         <NA> 2022-01-23        3
#> 3:         21      NA       NA         <NA> 2022-01-23        5
#> 4:         21      NA       NA         <NA> 2022-01-23        8
#> 5:         21      NA       NA         <NA> 2022-01-23        4

# Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change)
d[1,isoyearweek := "2021-01"]
d
#>    granularity_time granularity_geo country_iso3 location_code border    age
#>              <char>          <char>       <char>        <char>  <int> <char>
#> 1:      isoyearweek          county          nor  county_nor42     NA   <NA>
#> 2:      isoyearweek          county          nor  county_nor32     NA   <NA>
#> 3:      isoyearweek          county          nor  county_nor33     NA   <NA>
#> 4:      isoyearweek          county          nor  county_nor56     NA   <NA>
#> 5:      isoyearweek          county          nor  county_nor34     NA   <NA>
#>       sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>    <char>   <int>   <int>      <char>      <int>         <char>    <char>
#> 1:   <NA>    2021       1     2021-01          1        2021-Q1 2020/2021
#> 2:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 4:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 5:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>    seasonweek calyear calmonth calyearmonth       date deaths_n
#>         <num>   <int>    <int>       <char>     <Date>    <int>
#> 1:         19      NA       NA         <NA> 2021-01-10        3
#> 2:         21      NA       NA         <NA> 2022-01-23        3
#> 3:         21      NA       NA         <NA> 2022-01-23        5
#> 4:         21      NA       NA         <NA> 2022-01-23        8
#> 5:         21      NA       NA         <NA> 2022-01-23        4

# Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change)
d[2,isoyear := 2019]
d
#>    granularity_time granularity_geo country_iso3 location_code border    age
#>              <char>          <char>       <char>        <char>  <int> <char>
#> 1:      isoyearweek          county          nor  county_nor42     NA   <NA>
#> 2:          isoyear          county          nor  county_nor32     NA   <NA>
#> 3:      isoyearweek          county          nor  county_nor33     NA   <NA>
#> 4:      isoyearweek          county          nor  county_nor56     NA   <NA>
#> 5:      isoyearweek          county          nor  county_nor34     NA   <NA>
#>       sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>    <char>   <int>   <int>      <char>      <int>         <char>    <char>
#> 1:   <NA>    2021       1     2021-01          1        2021-Q1 2020/2021
#> 2:   <NA>    2019      52     2019-52          1        2022-Q1      <NA>
#> 3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 4:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 5:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#>    seasonweek calyear calmonth calyearmonth       date deaths_n
#>         <num>   <int>    <int>       <char>     <Date>    <int>
#> 1:         19      NA       NA         <NA> 2021-01-10        3
#> 2:         NA      NA       NA         <NA> 2019-12-29        3
#> 3:         21      NA       NA         <NA> 2022-01-23        5
#> 4:         21      NA       NA         <NA> 2022-01-23        8
#> 5:         21      NA       NA         <NA> 2022-01-23        4

# Smart assignment of time columns (note how granularity_time, isoyear, isoyearweek, date all change)
d[4:5,date := as.Date("2020-01-01")]
d
#>    granularity_time granularity_geo country_iso3 location_code border    age
#>              <char>          <char>       <char>        <char>  <int> <char>
#> 1:      isoyearweek          county          nor  county_nor42     NA   <NA>
#> 2:          isoyear          county          nor  county_nor32     NA   <NA>
#> 3:      isoyearweek          county          nor  county_nor33     NA   <NA>
#> 4:             date          county          nor  county_nor56     NA   <NA>
#> 5:             date          county          nor  county_nor34     NA   <NA>
#>       sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>    <char>   <int>   <int>      <char>      <int>         <char>    <char>
#> 1:   <NA>    2021       1     2021-01          1        2021-Q1 2020/2021
#> 2:   <NA>    2019      52     2019-52          1        2022-Q1      <NA>
#> 3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 4:   <NA>    2020       1     2020-01          1        2020-Q1 2019/2020
#> 5:   <NA>    2020       1     2020-01          1        2020-Q1 2019/2020
#>    seasonweek calyear calmonth calyearmonth       date deaths_n
#>         <num>   <int>    <int>       <char>     <Date>    <int>
#> 1:         19      NA       NA         <NA> 2021-01-10        3
#> 2:         NA      NA       NA         <NA> 2019-12-29        3
#> 3:         21      NA       NA         <NA> 2022-01-23        5
#> 4:         19    2020        1     2020-M01 2020-01-01        8
#> 5:         19    2020        1     2020-M01 2020-01-01        4

# Smart assignment fails when multiple time columns are set
d[1,c("isoyear","isoyearweek") := .(2021,"2021-01")]
#> Warning in `[.csfmt_rts_data_v2`(d, 1, `:=`(c("isoyear", "isoyearweek"), :
#> Multiple time variables specified. Smart-assignment disabled.
d
#>    granularity_time granularity_geo country_iso3 location_code border    age
#>              <char>          <char>       <char>        <char>  <int> <char>
#> 1:      isoyearweek          county          nor  county_nor42     NA   <NA>
#> 2:          isoyear          county          nor  county_nor32     NA   <NA>
#> 3:      isoyearweek          county          nor  county_nor33     NA   <NA>
#> 4:             date          county          nor  county_nor56     NA   <NA>
#> 5:             date          county          nor  county_nor34     NA   <NA>
#>       sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>    <char>   <int>   <int>      <char>      <int>         <char>    <char>
#> 1:   <NA>    2021       1     2021-01          1        2021-Q1 2020/2021
#> 2:   <NA>    2019      52     2019-52          1        2022-Q1      <NA>
#> 3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 4:   <NA>    2020       1     2020-01          1        2020-Q1 2019/2020
#> 5:   <NA>    2020       1     2020-01          1        2020-Q1 2019/2020
#>    seasonweek calyear calmonth calyearmonth       date deaths_n
#>         <num>   <int>    <int>       <char>     <Date>    <int>
#> 1:         19      NA       NA         <NA> 2021-01-10        3
#> 2:         NA      NA       NA         <NA> 2019-12-29        3
#> 3:         21      NA       NA         <NA> 2022-01-23        5
#> 4:         19    2020        1     2020-M01 2020-01-01        8
#> 5:         19    2020        1     2020-M01 2020-01-01        4

# Smart assignment of geo columns
d[1,c("location_code") := .("norge")]
d
#>    granularity_time granularity_geo country_iso3 location_code border    age
#>              <char>          <char>       <char>        <char>  <int> <char>
#> 1:      isoyearweek          nation          nor         norge     NA   <NA>
#> 2:          isoyear          county          nor  county_nor32     NA   <NA>
#> 3:      isoyearweek          county          nor  county_nor33     NA   <NA>
#> 4:             date          county          nor  county_nor56     NA   <NA>
#> 5:             date          county          nor  county_nor34     NA   <NA>
#>       sex isoyear isoweek isoyearweek isoquarter isoyearquarter    season
#>    <char>   <int>   <int>      <char>      <int>         <char>    <char>
#> 1:   <NA>    2021       1     2021-01          1        2021-Q1 2020/2021
#> 2:   <NA>    2019      52     2019-52          1        2022-Q1      <NA>
#> 3:   <NA>    2022       3     2022-03          1        2022-Q1 2021/2022
#> 4:   <NA>    2020       1     2020-01          1        2020-Q1 2019/2020
#> 5:   <NA>    2020       1     2020-01          1        2020-Q1 2019/2020
#>    seasonweek calyear calmonth calyearmonth       date deaths_n
#>         <num>   <int>    <int>       <char>     <Date>    <int>
#> 1:         19      NA       NA         <NA> 2021-01-10        3
#> 2:         NA      NA       NA         <NA> 2019-12-29        3
#> 3:         21      NA       NA         <NA> 2022-01-23        5
#> 4:         19    2020        1     2020-M01 2020-01-01        8
#> 5:         19    2020        1     2020-M01 2020-01-01        4

# Collapsing down to different levels, and healing the dataset 
# (so that it can be worked on further with regards to real time surveillance)
d[, .(deaths_n = sum(deaths_n), location_code = "norge"), keyby=.(granularity_time)] %>%
  cstidy::set_csfmt_rts_data_v2(create_unified_columns = FALSE) %>%
  print()
#>    granularity_time deaths_n location_code   date
#>              <char>    <int>        <char> <Date>
#> 1:             date       12         norge   <NA>
#> 2:          isoyear        3         norge   <NA>
#> 3:      isoyearweek        8         norge   <NA>

# Collapsing to different levels, and removing the class csfmt_rts_data_v2 because
# it is going to be used in new output/analyses
d[, .(deaths_n = sum(deaths_n), location_code = "norge"), keyby=.(granularity_time)] %>%
  cstidy::remove_class_csfmt_rts_data() %>%
  print()
#> Key: <granularity_time>
#>    granularity_time deaths_n location_code
#>              <char>    <int>        <char>
#> 1:             date       12         norge
#> 2:          isoyear        3         norge
#> 3:      isoyearweek        8         norge

Summary

We need a way to easily summarize the data structure of a dataset.

cstidy::generate_test_data() %>%
  cstidy::set_csfmt_rts_data_v2() %>%
  summary()
#> 
#> granularity_time
#> ✅ No errors
#> 
#> granularity_geo
#> ✅ No errors
#> 
#> country_iso3
#> ✅ No errors
#> 
#> location_code
#> ✅ No errors
#> 
#> border
#> ❌ Errors:
#> - NA exists (not allowed)
#> 
#> age
#> ✅ No errors
#> 
#> sex
#> ✅ No errors
#> 
#> isoyear
#> ✅ No errors
#> 
#> isoweek
#> ✅ No errors
#> 
#> isoyearweek
#> ✅ No errors
#> 
#> isoquarter
#> ✅ No errors
#> 
#> isoyearquarter
#> ✅ No errors
#> 
#> season
#> ✅ No errors
#> 
#> seasonweek
#> ✅ No errors
#> 
#> calyear
#> ✅ No errors
#> 
#> calmonth
#> ✅ No errors
#> 
#> calyearmonth
#> ✅ No errors
#> 
#> date
#> ✅ No errors
#> granularity_time (character):
#>  - isoyearweek (n = 45)
#> granularity_geo (character):
#>  - county (n = 45)
#> country_iso3 (character):
#>  - nor (n = 45)
#> location_code (character)
#> border (integer):
#>  - <NA> (n = 45)
#> age (character):
#>  - 000_005 (n = 15)
#>  - <NA>    (n = 15)
#>  - total   (n = 15)
#> sex (character):
#>  - <NA>  (n = 15)
#>  - total (n = 30)
#> isoyear (integer):
#>  - 2022 (n = 45)
#> isoweek (integer)
#> isoyearweek (character)
#> isoquarter (integer)
#> isoyearquarter (character)
#> season (character):
#>  - 2021/2022 (n = 45)
#> seasonweek (numeric)
#> calyear (integer)
#> calmonth (integer)
#> calyearmonth (character)
#> date (Date)
#> deaths_n (integer)

Identifying data structure of one column

We need a way to easily summarize the data structure of one column inside a dataset.

cstidy::generate_test_data() %>%
  cstidy::set_csfmt_rts_data_v2() %>%
  cstidy::identify_data_structure("deaths_n") %>%
  plot()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.