The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Customize your maps

Richard Aubrey White, Chi Zhang

2021-01-15

library(csmaps)
library(ggplot2)
library(data.table)
library(magrittr)

The maps can be easily customized with color and labels.

Colored maps

Automatic coloring by location_code

pd <- copy(csmaps::nor_county_map_b2024_insert_oslo_dt)

q <- ggplot()
q <- q + geom_polygon(
  data = pd, 
  mapping = aes(
    x = long, 
    y = lat,
    group = group,
    fill = location_code
  ),  
  color="black",
  linewidth = 0.2
)
q <- q + annotate(
  "text",
  x = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$long,
  y = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$lat,
  label = "Oslo"
)
q <- q + theme_void()
q <- q + coord_quickmap()
q <- q + labs(title = "")
q

Customized coloring with external information

It is also possible to specify the color by user-defined groups. Here we show an example of assigning different (pseudo) risk level to each county.

pd <- copy(csmaps::nor_county_map_b2024_insert_oslo_dt)

# assign each location a random category for different colors
location_info <- unique(pd[,c("location_code")])
location_info[,category:=rep(
  c("Good","Normal","Neutral","Bad","Very Bad"),
  each=3)[1:.N]
]
location_info[,category:=factor(
  category,
  levels=c("Good","Normal","Neutral","Bad","Very Bad")
  )
]
print(location_info)
#>     location_code category
#>  1:  county_nor01     Good
#>  2:  county_nor02     Good
#>  3:  county_nor03     Good
#>  4:  county_nor11   Normal
#>  5:  county_nor15   Normal
#>  6:  county_nor18   Normal
#>  7:  county_nor33  Neutral
#>  8:  county_nor34  Neutral
#>  9:  county_nor39  Neutral
#> 10:  county_nor40      Bad
#> 11:  county_nor42      Bad
#> 12:  county_nor46      Bad
#> 13:  county_nor50 Very Bad
#> 14:  county_nor55 Very Bad
#> 15:  county_nor56 Very Bad

# join the map data.table
pd[location_info,on="location_code",category:=category]

q <- ggplot()
q <- q + geom_polygon(
  data = pd, 
  mapping = aes(
    x = long,
    y = lat,
    group = group,
    fill=category
  ), 
  color="black", 
  size=0.25
)
q <- q + annotate(
  "text",
  x = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$long,
  y = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$lat,
  label = "Oslo"
)
q <- q + coord_quickmap()
q <- q + labs(title="")
q <- q + theme_void()
q

Labeled maps

We can add labels of county index onto the maps. There are several options for adding texts on a graph in ggplot2. We recommend geom_label() to add the labels if no label overlap occurs, otherwise we recommend using ggrepel::geom_label_repel().

pd <- copy(csmaps::nor_county_map_b2024_insert_oslo_dt)
q <- ggplot()
q <- q + geom_polygon(
  data = pd, 
  mapping = aes(
    x = long,
    y = lat,
    group = group,
    fill = location_code
  ),  
  color="black",
  linewidth = 0.2
)
q <- q + annotate(
  "text",
  x = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$long,
  y = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$lat,
  label = "Oslo"
)
q <- q + geom_label(
  data = csmaps::nor_county_position_geolabels_b2024_default_dt,
  mapping = aes(x = long, y = lat, label = location_code)
  )
# ggrepel::geom_label_repel() for avoiding overlap
q <- q + theme_void()
q <- q + coord_quickmap()
q <- q + labs(title = "")
q

Labels can be easily added to other layouts, such as Oslo wards.

q <- ggplot(mapping = aes(x = long, y = lat))
q <- q + geom_polygon(
  data = csmaps::oslo_ward_map_b2024_default_dt,
  mapping = aes(group = group),
  color = "black",
  fill = "white",
  linewidth = 0.2
)
q <- q + geom_label(
  data = csmaps::oslo_ward_position_geolabels_b2024_default_dt,
  mapping = aes(label = location_code),
  color = "red",
  size = 3,
  label.size = 0.1,
  label.r = grid::unit(0, "lines")
)
q <- q + theme_void()
q <- q + coord_quickmap()
q

Enrich plot with additional data

It is convenient to use csdata package to enrich Norway and Oslo maps with external information, such as location name and population. We illustrate how to do it here.

Add county name and population to Norway map

# enrich with population and location name
dpop_2024 <- csdata::nor_population_by_age_cats()[calyear==2024]

# join, create label
labels <- copy(csmaps::nor_county_position_geolabels_b2024_insert_oslo_dt)
labels[
  dpop_2024, 
  on = "location_code",
  pop_total := pop_jan1_n
]
labels[
  csdata::nor_locations_names(), 
  on = "location_code",
  location_name := location_name
]
labels[, label := paste0(location_name, '\n', pop_total)]
print(head(labels))
#>    location_code     long      lat pop_total location_name             label
#> 1:  county_nor31 11.26614 59.33375        NA       Østfold       Østfold\nNA
#> 2:  county_nor32 11.20000 60.03851        NA      Akershus      Akershus\nNA
#> 3:  county_nor33  8.85000 60.60000        NA      Buskerud      Buskerud\nNA
#> 4:  county_nor03 20.85000 62.00000    709037          Oslo      Oslo\n709037
#> 5:  county_nor34 11.00000 61.86886    373628     Innlandet Innlandet\n373628
#> 6:  county_nor39 10.00000 59.32481        NA      Vestfold      Vestfold\nNA

# plot
pd <- copy(csmaps::nor_county_map_b2024_insert_oslo_dt)
q <- ggplot()
q <- q + geom_polygon(
  data = pd, 
  mapping = aes(
    x = long,
    y = lat,
    group = group,
    fill = location_code
  ),
  color="black",
  linewidth = 0.2
)
q <- q + annotate(
  "text",
  x = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$long,
  y = csmaps::nor_xxx_position_title_insert_oslo_b2024_insert_oslo_dt$lat,
  label = "Oslo"
)
q <- q + ggrepel::geom_label_repel(
  data = labels,
  mapping = aes(x = long, y = lat, label = label)
)
q <- q + theme_void()
q <- q + coord_quickmap()
q <- q + labs(title = "")
q

Add location name for ward and population for Oslo map

# enrich with population and location name
dpop_2024 <- csdata::nor_population_by_age_cats()[calyear==2024]

# join, create label
labels <- copy(csmaps::oslo_ward_position_geolabels_b2024_default_dt)
labels[
  dpop_2024, 
  on = "location_code",
  pop_total := pop_jan1_n
]
labels[
  csdata::nor_locations_names(), 
  on = "location_code",
  location_name := location_name
]
labels[, label := paste0(location_name, '\n', pop_total)]
print(head(labels))
#>         location_code     long      lat pop_total  location_name
#> 1: wardoslo_nor030101 10.79760 59.91010     61756     Gamle Oslo
#> 2: wardoslo_nor030102 10.78000 59.92567     64270    Grünerløkka
#> 3: wardoslo_nor030103 10.76683 59.93981     46984         Sagene
#> 4: wardoslo_nor030104 10.73555 59.91230     39487 St. Hanshaugen
#> 5: wardoslo_nor030105 10.66500 59.89925     60163        Frogner
#> 6: wardoslo_nor030106 10.65000 59.92500     35198         Ullern
#>                    label
#> 1:     Gamle Oslo\n61756
#> 2:    Grünerløkka\n64270
#> 3:         Sagene\n46984
#> 4: St. Hanshaugen\n39487
#> 5:        Frogner\n60163
#> 6:         Ullern\n35198

q <- ggplot(mapping = aes(x = long, y = lat))
q <- q + geom_polygon(
  data = csmaps::oslo_ward_map_b2024_default_dt,
  mapping = aes(group = group),
  color = "black",
  fill = "white",
  linewidth = 0.2
)
q <- q + geom_label(
  data = labels,
  mapping = aes(label = label),
  color = "red",
  size = 3,
  label.size = 0.1,
  label.r = grid::unit(0, "lines")
)
q <- q + theme_void()
q <- q + coord_quickmap()
q

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.