The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

check-standard

Conditional Predictive Impact

David S. Watson, Marvin N. Wright

Introduction

The conditional predictive impact (CPI) is a measure of conditional independence. It can be calculated using any supervised learning algorithm, loss function, and knockoff sampler. We provide statistical inference procedures for the CPI without parametric assumptions or sparsity constraints. The method works with continuous and categorical data.

Installation

To install the ranger R package from CRAN, just run

install.packages("cpi")

To install the development version from GitHub using devtools, run

devtools::install_github("bips-hb/cpi")

Examples

Calculate CPI for random forest on iris data with 5-fold cross validation:

library(mlr3)
library(mlr3learners)
library(cpi)

cpi(task = tsk("iris"), 
    learner = lrn("classif.ranger", predict_type = "prob"),
    resampling = rsmp("cv", folds = 5), 
    measure = "classif.logloss", test = "t")

References

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.