The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The covid19tunisia R package provides a tidy format dataset of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) pandemic outbreak in Tunisia. The package covers a daily summary of the outbreak on the national level.
The data was pull from :
Official Facebook page of the Tunisian Ministry of Health through their daily published press releases.
Regional governments in Tunisia.
You can install the released version of covid19tunisia from CRAN with:
The covid19tunisia
dataset provides an overall summary
of the cases in Tunisia since the beginning of the covid19 outbreak on
March 2, 2020. The dataset contains the following fields:
▲ date
- The date in YYYY-MM-DD form.
▲ location
- The name of the government as provided by
the data sources.
▲ location_type
- The type of location using the
covid19R controlled vocabulary. In this case, it’s “state”.
▲ location_code
- A standardized location code using a
national or international standard. In this case, . See https://www.iso.org/obp/ui/#iso:code:3166:TN for
details.
▲ location_code_type
The type of standardized location
code being used according to the covid19R controlled vocabulary. Here we
use “ISO 3166-2”.
▲ data_type
- the type of data in that given row.
Includes cases new : new confirmed Covid-19 cases during on the current
date, recovered_new : new number of patients recovered on the current
date and deaths_new : new deaths on the current date.
▲ value
- number of cases of each data type.
library(covid19tunisia)
data <- refresh_covid19tunisia()
#> Downloading raw data from https://raw.githubusercontent.com/MounaBelaid/covid19datatunisia/master/dist/data.csv.
head(data)
#> # A tibble: 6 × 7
#> date location location_type location_code location_code_type data_type
#> <date> <chr> <chr> <chr> <chr> <chr>
#> 1 2020-03-02 Gafsa state TN-71 iso_3166_2 cases_new
#> 2 2020-03-08 Mahdia state TN-53 iso_3166_2 cases_new
#> 3 2020-03-09 Bizerte state TN-23 iso_3166_2 cases_new
#> 4 2020-03-09 Mahdia state TN-53 iso_3166_2 cases_new
#> 5 2020-03-09 Tunis state TN-11 iso_3166_2 cases_new
#> 6 2020-03-10 Mahdia state TN-53 iso_3166_2 cases_new
#> # ℹ 1 more variable: value <dbl>
str(data)
#> spc_tbl_ [5,298 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
#> $ date : Date[1:5298], format: "2020-03-02" "2020-03-08" ...
#> $ location : chr [1:5298] "Gafsa" "Mahdia" "Bizerte" "Mahdia" ...
#> $ location_type : chr [1:5298] "state" "state" "state" "state" ...
#> $ location_code : chr [1:5298] "TN-71" "TN-53" "TN-23" "TN-53" ...
#> $ location_code_type: chr [1:5298] "iso_3166_2" "iso_3166_2" "iso_3166_2" "iso_3166_2" ...
#> $ data_type : chr [1:5298] "cases_new" "cases_new" "cases_new" "cases_new" ...
#> $ value : num [1:5298] 1 1 1 1 1 1 1 3 3 1 ...
#> - attr(*, "spec")=
#> .. cols(
#> .. date = col_date(format = ""),
#> .. location = col_character(),
#> .. location_type = col_character(),
#> .. location_code = col_character(),
#> .. location_code_type = col_character(),
#> .. data_type = col_character(),
#> .. value = col_double()
#> .. )
#> - attr(*, "problems")=<externalptr>
# Transform the data
library(dplyr)
library(tidyr)
library(plotly)
data_transformed <- data %>% group_by(date,data_type) %>% summarise(value=sum(value)) %>%
spread(data_type,value)
head(data_transformed)
# A tibble: 6 x 4
# Groups: date [6]
date cases_new deaths_new recovered_new
<date> <dbl> <dbl> <dbl>
1 2020-03-02 1 0 0
2 2020-03-08 1 0 0
3 2020-03-09 3 0 0
4 2020-03-10 1 0 0
5 2020-03-11 1 0 0
6 2020-03-12 6 0 0
data_transformed %>%
ungroup() %>% plot_ly(type = 'scatter',
mode = 'lines+markers')%>%
add_trace(x = ~date, y = ~cumsum(cases_new),
name = 'Confirmed cases',
marker = list(color = '#fec44f'),
line = list(color = '#fec44f'),
hoverinfo = "text",
text = ~paste(cases_new, "New confirmed cases\n",cumsum(cases_new), 'Total number of infected cases on', date)) %>%
add_trace(x = ~date, y = ~cumsum(deaths_new),
name = 'Deaths',
marker = list(color = 'red'),
line = list(color = 'red'),
hoverinfo = "text",
text = ~paste(deaths_new, "New deaths\n",cumsum(deaths_new), 'Total number of deaths on', date)) %>%
add_trace(x = ~date, y = ~cumsum(recovered_new),
name = 'Recovered cases',
marker = list(color = 'green'),
line = list(color = 'green'),
hoverinfo = "text",
text = ~paste(recovered_new, "New recovered cases\n",cumsum(recovered_new), 'Total number of recovered cases on', date)) %>%
layout(title = 'Tunisia - Daily Evolution of Active COVID19 Cases',
legend = list(x = 0.1, y = 0.9,
font = list(family = "sans-serif", size = 14, color = "#000"), bgcolor = "",
bordercolor = "#FFFFFF", borderwidth = 2),
xaxis = list(title = ""),
yaxis = list(side = 'left', title = 'Daily evolution', showgrid = TRUE, zeroline = TRUE))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.