Package ‘couplr’

January 20, 2026

Title Optimal Pairing and Matching via Linear Assignment
Version 1.0.6

Description Solves optimal pairing and matching problems using linear assignment
algorithms. Provides implementations of the Hungarian method (Kuhn 1955)
<doi:10.1002/nav.3800020109>, Jonker-Volgenant shortest path algorithm
(Jonker and Volgenant 1987) <doi:10.1007/BF02278710>, Auction algorithm
(Bertsekas 1988) <doi:10.1007/BF02186476>, cost-scaling
(Goldberg and Kennedy 1995) <doi:10.1007/BF01585996>, scaling algorithms
(Gabow and Tarjan 1989) <doi:10.1137/0218069>, push-relabel (Goldberg and
Tarjan 1988) <doi:10.1145/48014.61051>, and Sinkhorn entropy-regularized
transport (Cuturi 2013) <doi:10.48550/arxiv.1306.0895>. Designed for
matching plots, sites, samples, or any pairwise optimization problem.

Supports rectangular matrices, forbidden assignments, data frame inputs,
batch solving, k-best solutions, and pixel-level image morphing for
visualization. Includes automatic preprocessing with variable health
checks, multiple scaling methods (standardized, range, robust), greedy
matching algorithms, and comprehensive balance diagnostics for assessing
match quality using standardized differences and distribution comparisons.

License MIT + file LICENSE
Language en-US

Encoding UTF-8
RoxygenNote 7.3.3
Depends R (>=4.1.0)

Imports Rcpp (>= 1.0.0), tibble (>= 3.0.0), dplyr (>= 1.0.0), rlang
(>=0.4.0), purrr (>= 0.3.0), magrittr (>= 2.0.0), methods

Suggests testthat (>= 3.0.0), xml2, e1071, R.utils, microbenchmark,
withr, knitr, rmarkdown, bench, parallel, future (>= 1.20.0),
future.apply (>= 1.8.0), ggplot2, ggraph, tidygraph, magick,
OpenlmageR, farver, av, reticulate, png, combinat

LinkingTo Rcpp, ReppEigen, testthat
SystemRequirements C++17

LazyData true

https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1007/BF02278710
https://doi.org/10.1007/BF02186476
https://doi.org/10.1007/BF01585996
https://doi.org/10.1137/0218069
https://doi.org/10.1145/48014.61051
https://doi.org/10.48550/arxiv.1306.0895

VignetteBuilder knitr

URL https://gillescolling.com/couplr/,
https://github.com/gcol33/couplr

BugReports https://github.com/gcol33/couplr/issues
Config/testthat/edition 3

Config/testthat/parallel true

NeedsCompilation yes

Author Gilles Colling [aut, cre, cph]

Maintainer Gilles Colling <gilles.colling@51@gmail.com>
Repository CRAN

Date/Publication 2026-01-20 10:30:13 UTC

Contents

asSIgNMENt
assignment_duals oL oo
as_assignment_matrixl
AUZMENE vt e e e e e e e e e
augment.matching_result oL L.
balance_diagnosticso oL
balance table
bottleneck_assignment
compute_distances
diagnose_distance_matrix oL .
example_CoStS
example_df
get_method_used
get_total_cost
greedy_couples
hospital_staff
is_distance_object Lo
is_lap_solve_batch_result
is_lap_solve_kbest_result
is_lap_solve_result Lo
join_matched Lo
lap_solve
lap_solve_batch
lap_solve_kbest
lap_solve_line_metric
matchmaker
match_couples
pixel_morph
pixel_morph_animate
plot.balance_diagnostics oL

Contents

https://gillescolling.com/couplr/
https://github.com/gcol33/couplr
https://github.com/gcol33/couplr/issues

assignment 3

plot.matching_result 42
preprocess_matching_vars e e e 43
print.balance_diagnostics 44
print.distance_object 44
print.lap_solve_batch_result L 45
print.lap_solve_kbest_result 45
printlap_solve_result e 46
print.matching result o 46
print.matchmaker_result L L L 47
print.preprocessing_result 47
print.variable_health o 48
sinkhorn L 48
sinkhorn_to_assignment e 50
summary.balance_diagnosticso oL 51
summary.distance_object L L. 52
summary.lap_solve_kbest_result Lo 52
summary.matching_result 53
update_constraintS e e e e e e e e e e e 53
Index 55
assignment Linear assignment solver
Description

Solve the linear assignment problem (minimum- or maximum-cost matching) using several algo-
rithms. Forbidden edges can be marked as NA or Inf.

Usage

assignment(
cost,
maximize = FALSE,
method = c("auto”, "jv", "hungarian”, "auction”, "auction_gs", "auction_scaled”, "sap”,
"ssp”, "csflow”, "hk@1", "bruteforce”, "ssap_bucket”, "cycle_cancel”, "gabow_tarjan",
"lapmod”, "csa”, "ramshaw_tarjan”, "push_relabel”, "orlin", "network_simplex"),
auction_eps = NULL,

eps = NULL
)
Arguments
cost Numeric matrix; rows = tasks, columns = agents. NA or Inf entries are treated
as forbidden assignments.
maximize Logical; if TRUE, maximizes the total cost instead of minimizing.
method Character string indicating the algorithm to use. Options:

General-purpose solvers:

4 assignment

e "auto” — Automatic selection based on problem characteristics (default)
e "jv" — *Jonker-Volgenant’, fast general-purpose O(n?)
e "hungarian” — Classic 'Hungarian’ algorithm O(n3)

Auction-based solvers:

* "auction” — ’Bertsekas’ auction with adaptive epsilon
* "auction_gs" — *Gauss-Seidel’ variant, good for spatial structure
* "auction_scaled” — ’Epsilon-scaling’, fastest for large dense problems

Specialized solvers:
* "sap” /"ssp" — Shortest augmenting path, handles sparsity well
e "lapmod” — Sparse JV variant, faster when >50\
e "hk@1" — "Hopcroft-Karp’ for binary (0/1) costs only

* "ssap_bucket” — ’Dial’ algorithm for integer costs
e "line_metric" — O(n log n) for 1D assignment problems
* "bruteforce” — Exact enumeration for tiny problems (n <= 8)

Advanced solvers:

* "csa" — 'Goldberg-Kennedy’ cost-scaling, often fastest for medium-large

* "gabow_tarjan" — Gabow-Tarjan’ bit-scaling with complementary slack-
ness O(n3 log C)

* "cycle_cancel” — Cycle-canceling with *Karp’ algorithm

» "csflow” — Cost-scaling network flow

* "network_simplex"” — 'Network simplex’ with spanning tree representa-
tion

e "orlin" — ’Orlin-Ahuja’ scaling O(sqrt(n) * m * log(nC))

e "push_relabel” — ’Push-relabel’ max-flow based solver

* "ramshaw_tarjan" — ’Ramshaw-Tarjan’, optimized for rectangular ma-

trices (n !=m)

auction_eps Optional numeric epsilon for the *Auction’/’ Auction-GS’ methods. If NULL, an
internal default (e.g., 1e-9) is used.

eps Deprecated. Use auction_eps. If provided and auction_eps is NULL, its value
is used for auction_eps.

Details
method = "auto” selects an algorithm based on problem size/shape and data characteristics:

e Very small (n <= 8): "bruteforce” — exact enumeration

* Binary/constant costs: "hk@1" — specialized for 0/1 costs

» Large sparse (n>100, >50\

» Sparse or very rectangular: "sap” — handles sparsity well

* Small-medium (8 < n <= 50): "hungarian” — provides exact dual solutions
e Medium (50 < n <=75): "jv" — fast general-purpose solver

* Large (n>75): "auction_scaled” — fastest for large dense problems

Benchmarks show ’Auction-scaled” and *JV’ are 100-1500x faster than "Hungarian’ at n=500.

assignment_duals 5

Value

An object of class lap_solve_result, a list with elements:
* match — integer vector of length min(nrow(cost), ncol(cost)) giving the assigned col-
umn for each row (0 if unassigned).
* total_cost — numeric scalar, the objective value.
* status — character scalar, e.g. "optimal”.

* method_used — character scalar, the algorithm actually used.

See Also

e lap_solve() — Tidy interface returning tibbles

* lap_solve_kbest() — Find k-best assignments ('Murty’ algorithm)

* assignment_duals() — Extract dual variables for sensitivity analysis

* bottleneck_assignment() — Minimize maximum edge cost (minimax)

* sinkhorn() — Entropy-regularized optimal transport

Examples

cost <- matrix(c(4,2,5, 3,3,6, 7,5,4), nrow = 3, byrow = TRUE)
res <- assignment(cost)
res$match; res$total_cost

assignment_duals Solve assignment problem and return dual variables

Description

Solves the linear assignment problem and returns dual potentials (u, v) in addition to the optimal
matching. The dual variables provide an optimality certificate and enable sensitivity analysis.

Usage

assignment_duals(cost, maximize = FALSE)

Arguments

cost Numeric matrix; rows = tasks, columns = agents. NA or Inf entries are treated
as forbidden assignments.

maximize Logical; if TRUE, maximizes the total cost instead of minimizing.

6 assignment_duals

Details
The dual variables satisfy the complementary slackness conditions:

* For minimization: u[i] + v[j] <= cost[1i, j] for all (i,j)
* For any assigned pair (i,j): u[i] + v[j] = cost[i, j]

This implies that sum(u) + sum(v) = total_cost (strong duality).
Applications of dual variables:

* Optimality verification: Check that duals satisfy constraints

* Sensitivity analysis: Reduced cost c[i,j] - u[i] - v[j] shows how much an edge cost must
decrease before it enters the solution

* Pricing in column generation: Use duals to price new columns
* Warm starting: Reuse duals when costs change slightly

Value
A list with class "assignment_duals_result” containing:

* match - integer vector of column assignments (1-based)
* total_cost - optimal objective value

* u - numeric vector of row dual variables (length n)

* v - numeric vector of column dual variables (length m)

* status - character, e.g. "optimal”

See Also

assignment () for standard assignment without duals

Examples

cost <- matrix(c(4, 2, 5, 3, 3, 6, 7, 5, 4), nrow = 3, byrow = TRUE)
result <- assignment_duals(cost)

Check optimality: u + v should equal cost for assigned pairs
for (i in 1:3) {
j <- result$match[i]
cat(sprintf("Row %d -> Col %d: u + v = %.2f, cost = %.2f\n",
i, j, result$uli] + result$v[jl, costl[i, jI1))
3

Verify strong duality
cat("sum(u) + sum(v) =", sum(result$u) + sum(result$v), "\n")
cat("total_cost =", result$total_cost, "\n")

Reduced costs (how much must cost decrease to enter solution)
reduced <- outer(result$u, result$v, "+")

reduced_cost <- cost - reduced

print(round(reduced_cost, 2))

as_assignment_matrix

as_assignment_matrix Convert assignment result to a binary matrix

Description

Turns a tidy assignment result back into a 0/1 assignment matrix.

Usage

as_assignment_matrix(x, n_sources = NULL, n_targets = NULL)

Arguments
X An assignment result object of class lap_solve_result
n_sources Number of source nodes, optional
n_targets Number of target nodes, optional

Value

Integer matrix with O and 1 entries

augment Generic Augment Function

Description

S3 generic for augmenting model results with original data.

Usage
augment(x, ...)
Arguments
X An object to augment
Additional arguments passed to methods
Value

Augmented data (depends on method)

8 augment.matching_result

augment.matching_result
Augment Matching Results with Original Data (broom-style)

Description

S3 method for augmenting matching results following the broom package conventions. This is a
thin wrapper around join_matched() with sensible defaults for quick exploration.

Usage
S3 method for class 'matching_result'
augment(x, left, right, ...)

Arguments
X A matching_result object
left The original left dataset
right The original right dataset

Additional arguments passed to join_matched()

Details

This method follows the augment() convention from the broom package, making it easy to inte-
grate couplr into tidymodels workflows. It’s equivalent to calling join_matched() with default
parameters.

If the broom package is not loaded, you can use couplr: :augment () to access this function.

Value

A tibble with matched pairs and original data (see join_matched())

Examples

left <- data.frame(

id = 1:5,

treatment = 1,

age = c(25, 30, 35, 40, 45)
)

right <- data.frame(

id = 6:10,

treatment = 0,

age = c(24, 29, 36, 41, 44)
)

result <- match_couples(left, right, vars = "age")

balance_diagnostics 9

couplr::augment(result, left, right)

balance_diagnostics Balance Diagnostics for Matched Pairs

Description

Computes comprehensive balance statistics comparing the distribution of matching variables be-
tween left and right units in the matched sample.

Usage
balance_diagnostics(
result,
left,
right,
vars = NULL,
left_id = "id",
right_id = "id"
)
Arguments
result A matching result object from match_couples() or greedy_couples()
left Data frame of left units
right Data frame of right units
vars Character vector of variable names to check balance for. Defaults to the vari-
ables used in matching (if available in result).
left_id Character, name of ID column in left data (default: "id")
right_id Character, name of ID column in right data (default: "id")
Details

This function computes several balance metrics:

Standardized Difference: The difference in means divided by the pooled standard deviation. Values
less than 0.1 indicate excellent balance, 0.1-0.25 good balance.

Variance Ratio: The ratio of standard deviations (left/right). Values close to 1 are ideal.

KS Statistic: Kolmogorov-Smirnov test statistic comparing distributions. Lower values indicate
more similar distributions.

Overall Metrics include mean absolute standardized difference across all variables, proportion of
variables with large imbalance (Istd diffl > 0.25), and maximum standardized difference.

10 balance_table

Value

An S3 object of class balance_diagnostics containing:

var_stats Tibble with per-variable balance statistics
overall List with overall balance metrics

pairs Tibble of matched pairs with variables
n_matched Number of matched pairs
n_unmatched_left Number of unmatched left units
n_unmatched_right Number of unmatched right units
method Matching method used

has_blocks Whether blocking was used

block_stats Per-block statistics (if blocking used)

Examples

Create sample data
set.seed(123)
left <- data.frame(

id = 1:10,

age = rnorm(10, 45, 10),

income = rnorm(10, 50000, 15000)
)
right <- data.frame(

id = 11:30,

age = rnorm(20, 47, 10),

income = rnorm(20, 52000, 15000)
)

Match
result <- match_couples(left, right, vars = c("age"”, "income"))

Get balance diagnostics
balance <- balance_diagnostics(result, left, right, vars = c("age"”, "income"))
print(balance)

Get balance table
balance_table(balance)

balance_table Create Balance Table

Description

Formats balance diagnostics into a clean table for display or export.

bottleneck_assignment 11

Usage

balance_table(balance, digits = 3)

Arguments
balance A balance_diagnostics object from balance_diagnostics()
digits Number of decimal places for rounding (default: 3)

Value

A tibble with formatted balance statistics

bottleneck_assignment Solve the Bottleneck Assignment Problem

Description

Finds an assignment that minimizes (or maximizes) the maximum edge cost in a perfect matching.
Unlike standard LAP which minimizes the sum of costs, BAP minimizes the maximum (bottleneck)
cost.

Usage

bottleneck_assignment(cost, maximize = FALSE)

Arguments
cost Numeric matrix; rows = tasks, columns = agents. NA or Inf entries are treated
as forbidden assignments.
maximize Logical; if TRUE, maximizes the minimum edge cost instead of minimizing the
maximum (maximin objective). Default is FALSE (minimax).
Details

The Bottleneck Assignment Problem (BAP) is a variant of the Linear Assignment Problem where
instead of minimizing the sum of assignment costs, we minimize the maximum cost among all
assignments (minimax objective).

Algorithm: Uses binary search on the sorted unique costs combined with "Hopcroft-Karp’ bipartite
matching to find the minimum threshold that allows a perfect matching.

Complexity: O(E * sqrt(V) * log(unique costs)) where E = edges, V = vertices.
Applications:

* Task scheduling with deadline constraints (minimize latest completion)
¢ Resource allocation (minimize maximum load/distance)
* Network routing (minimize maximum link utilization)

* Fair division problems (minimize maximum disparity)

12 compute_distances

Value

A list with class "bottleneck_result” containing:

* match - integer vector of length nrow(cost) giving the assigned column for each row (1-based
indexing)

* bottleneck - numeric scalar, the bottleneck (max/min edge) value

* status - character scalar, e.g. "optimal”

See Also

assignment() for standard LAP (sum objective), lap_solve() for tidy LAP interface

Examples

Simple example: minimize max cost
cost <- matrix(c(1, 5, 3,
2, 4, 6,
7, 1, 2), nrow = 3, byrow = TRUE)
result <- bottleneck_assignment(cost)
result$bottleneck # Maximum edge cost in optimal assignment

Maximize minimum (fair allocation)
profits <- matrix(c(10, 5, 8,

6, 12, 4,

3, 7, 11), nrow = 3, byrow = TRUE)
result <- bottleneck_assignment(profits, maximize = TRUE)
result$bottleneck # Minimum profit among all assignments

With forbidden assignments
cost <- matrix(c(1, NA, 3,

2, 4, Inf,

5, 1, 2), nrow = 3, byrow = TRUE)
result <- bottleneck_assignment(cost)

compute_distances Compute and Cache Distance Matrix for Reuse

Description

Precomputes a distance matrix between left and right datasets, allowing it to be reused across mul-
tiple matching operations with different constraints. This is particularly useful when exploring
different matching parameters (max_distance, calipers, methods) without recomputing distances.

compute_distances 13

Usage
compute_distances(
left,
right,
vars,
distance = "euclidean”,

weights = NULL,
scale = FALSE,
auto_scale = FALSE,
left_id = "id",
right_id = "id",
block_id = NULL

)
Arguments

left Left dataset (data frame)

right Right dataset (data frame)

vars Character vector of variable names to use for distance computation

distance Distance metric (default: "euclidean™)

weights Optional numeric vector of variable weights

scale Scaling method: FALSE, "standardize", "range", or "robust"

auto_scale Apply automatic preprocessing (default: FALSE)

left_id Name of ID column in left (default: "id")

right_id Name of ID column in right (default: "id")

block_id Optional block ID column name for blocked matching
Details

This function computes distances once and stores them in a reusable object. The resulting dis-
tance_object can be passed to match_couples() or greedy_couples() instead of providing datasets
and variables.

Benefits:

* Performance: Avoid recomputing distances when trying different constraints
» Exploration: Quickly test max_distance, calipers, or methods

* Consistency: Ensures same distances used across comparisons

* Memory efficient: Can use sparse matrices when many pairs are forbidden

The distance_object stores the original datasets, allowing downstream functions like join_matched()
to work seamlessly.

14 diagnose_distance_matrix

Value
An S3 object of class "distance_object" containing:

e cost_matrix: Numeric matrix of distances

e left_ids: Character vector of left IDs

e right_ids: Character vector of right IDs

* block_id: Block ID column name (if specified)

* metadata: List with computation details (vars, distance, scale, etc.)
» original_left: Original left dataset (for later joining)

* original_right: Original right dataset (for later joining)

Examples

Compute distances once
left <- data.frame(id = 1:5, age = c(25, 30, 35, 40, 45), income = c(45, 52, 48, 61, 55) * 1000)
right <- data.frame(id = 6:10, age = c(24, 29, 36, 41, 44), income = c(46, 51, 47, 60, 54) * 1000)

dist_obj <- compute_distances(

left, right,
vars = c("age", "income"),
scale = "standardize"

)

Reuse for different matching strategies

resultl <- match_couples(dist_obj, max_distance = 0.5)
result2 <- match_couples(dist_obj, max_distance = 1.0)
result3 <- greedy_couples(dist_obj, strategy = "sorted")

All use the same precomputed distances

diagnose_distance_matrix
Diagnose distance matrix and suggest fixes

Description

Comprehensive diagnostics for a distance matrix with actionable suggestions.

Usage

diagnose_distance_matrix(
cost_matrix,

left = NULL,
right = NULL,
vars = NULL,
warn = TRUE

example_costs 15

Arguments
cost_matrix Numeric matrix of distances
left Left dataset (for variable checking)
right Right dataset (for variable checking)
vars Variables used for matching
warn If TRUE, issue warnings

Value

List with diagnostic results and suggestions

example_costs Example cost matrices for assignment problems

Description

Small example datasets for demonstrating couplr functionality across different assignment problem
types: square, rectangular, sparse, and binary.

Usage

example_costs

Format
A list containing four example cost matrices:
simple_3x3 A 3x3 cost matrix with costs ranging from 2-7. Optimal assignment: row 1 -> col 2

(cost 2), row 2 -> col 1 (cost 3), row 3 -> col 3 (cost 4). Total optimal cost: 9.

rectangular_3x5 A 3x5 rectangular cost matrix demonstrating assignment when rows < columns.
Each of 3 rows is assigned to one of 5 columns; 2 columns remain unassigned. Costs range
1-6.

sparse_with_na A 3x3 matrix with NA values indicating forbidden assignments. Use this to test
algorithms’ handling of constraints. Position (1,3), (2,2), and (3,1) are forbidden.

binary_costs A 3x3 matrix with binary (0/1) costs, suitable for testing the HKO1 algorithm. Diag-
onal entries are O (preferred), off-diagonal entries are 1 (penalty).

Details

These matrices are designed to test different aspects of LAP solvers:
simple_3x3: Basic functionality test. Any correct solver should find total cost = 9.

rectangular_3x5: Tests handling of non-square problems. The optimal solution assigns all 3 rows
with minimum total cost.

sparse_with_na: Tests constraint handling. Algorithms must avoid NA positions while finding an
optimal assignment among valid entries.

binary_costs: Tests specialized binary cost algorithms. The optimal assignment uses all diagonal
entries (total cost = 0).

16 example_df

See Also

lap_solve, example_df

Examples

Simple 3x3 assignment

result <- lap_solve(example_costs$simple_3x3)
print(result)

Optimal: sources 1,2,3 -> targets 2,1,3 with cost 9

Rectangular problem (3 sources, 5 targets)
result <- lap_solve(example_costs$rectangular_3x5)
print(result)

All 3 sources assigned; 2 targets unassigned

Sparse problem with forbidden assignments
result <- lap_solve(example_costs$sparse_with_na)
print(result)

Avoids NA positions

Binary costs - test HKQ1 algorithm

result <- lap_solve(example_costs$binary_costs, method = "hko1")
print(result)

Finds diagonal assignment (cost = 0)

example_df Example assignment problem data frame

Description
A tidy data frame representation of assignment problems, suitable for use with grouped workflows
and batch solving. Contains two independent 3x3 assignment problems in long format.

Usage
example_df

Format
A tibble with 18 rows and 4 columns:
sim Simulation/problem identifier. Integer with values 1 or 2, distinguishing two independent as-
signment problems. Use with group_by (sim) for grouped solving.
source Source node index. Integer 1-3 representing the row (source) in each 3x3 cost matrix.
target Target node index. Integer 1-3 representing the column (target) in each 3x3 cost matrix.

cost Cost of assigning source to target. Numeric values ranging from 1-7. Each source-target pair
has exactly one cost entry.

get_method_used 17

Details
This dataset demonstrates couplr’s data frame interface for LAP solving. The long format (one row
per source-target pair) is converted internally to a cost matrix for solving.

Simulation 1: Costs from example_costs$simple_3x3

* Optimal assignment: (1->2, 2->1, 3->3)
e Total cost: 9

Simulation 2: Different cost structure

* Optimal assignment: (1->1, 2->3, 3->3) or equivalent

e Total cost: 4

See Also

lap_solve, lap_solve_batch, example_costs

Examples

library(dplyr)

Solve both problems with grouped workflow
example_df |>

group_by(sim) |>

lap_solve(source, target, cost)

Batch solving for efficiency
example_df |>
group_by(sim) |>
lap_solve_batch(source, target, cost)

Inspect the data structure
example_df |>
group_by(sim) |>
summarise(
n_pairs = n(),
min_cost = min(cost),
max_cost = max(cost)

)

get_method_used Extract method used from assignment result

Description

Extract method used from assignment result

18 greedy_couples

Usage

get_method_used(x)

Arguments

X An assignment result object

Value

Character string indicating method used

get_total_cost Extract total cost from assignment result

Description

Extract total cost from assignment result

Usage

get_total_cost(x)

Arguments

X An assignment result object

Value

Numeric total cost

greedy_couples Fast approximate matching using greedy algorithm

Description

Performs fast one-to-one matching using greedy strategies. Does not guarantee optimal total dis-
tance but is much faster than match_couples() for large datasets. Supports blocking, distance
constraints, and various distance metrics.

greedy_couples

Usage

greedy_couples(
left,
right = NULL,
vars = NULL,
distance = "euclidean”,

19

weights = NULL,
scale = FALSE,
auto_scale = FALSE,

max_distance = Inf,
calipers = NULL,
block_id = NULL,

ignore_blocks = FALSE,
require_full_matching = FALSE,

strategy = c("row_best"”, "sorted”, "pq"),
return_unmatched = TRUE,
return_diagnostics = FALSE,

parallel = FALSE,

check_costs = TRUE
)
Arguments
left Data frame of "left" units (e.g., treated, cases)
right Data frame of "right" units (e.g., control, controls)
vars Variable names to use for distance computation
distance Distance metric: "euclidean", "manhattan”, "mahalanobis", or a custom function
weights Optional named vector of variable weights
scale Scaling method: FALSE (none), "standardize", "range", or "robust"
auto_scale If TRUE, automatically check variable health and select scaling method (default:

max_distance
calipers
block_id

ignore_blocks

FALSE)

Maximum allowed distance (pairs exceeding this are forbidden)
Named list of per-variable maximum absolute differences
Column name containing block IDs (for stratified matching)

If TRUE, ignore block_id even if present

require_full_matching

strategy

If TRUE, error if any units remain unmatched
Greedy strategy:

* "row_best": For each row, find best available column (default)
» "sorted": Sort all pairs by distance, greedily assign
* "pq": Use priority queue (good for very large problems)

return_unmatched

Include unmatched units in output

20 greedy_couples

return_diagnostics
Include detailed diagnostics in output

parallel Enable parallel processing for blocked matching. Requires ’future’ and ’fu-
ture.apply’ packages. Can be:

* FALSE: Sequential processing (default)
* TRUE: Auto-configure parallel backend

 Character: Specify future plan (e.g., "multisession”, "multicore")

>

check_costs If TRUE, check distance distribution for potential problems and provide helpful
warnings before matching (default: TRUE)

Details

Greedy strategies do not guarantee optimal total distance but are much faster:

* "row_best": O(n*m) time, simple and often produces good results
* "sorted": O(nmlog(n*m)) time, better quality but slower

* "pq": O(nmlog(n*m)) time, memory-efficient for large problems

Use greedy_couples when:

* Dataset is very large (> 10,000 x 10,000)
* Approximate solution is acceptable

* Speed is more important than optimality

Value

A list with class "matching_result" (same structure as match_couples)

Examples

Basic greedy matching

left <- data.frame(id = 1:100, x = rnorm(100))
right <- data.frame(id = 101:200, x = rnorm(100))
result <- greedy_couples(left, right, vars = "x")

Compare to optimal

result_opt <- match_couples(left, right, vars = "x")

result_greedy <- greedy_couples(left, right, vars = "x")
result_greedy$info$total_distance / result_opt$info$total_distance # Quality ratio

hospital_staff 21

hospital_staff Hospital staff scheduling example dataset

Description

A comprehensive example dataset for demonstrating couplr functionality across vignettes. Con-
tains hospital staff scheduling data with nurses, shifts, costs, and preference scores suitable for
assignment problems, as well as nurse characteristics for matching workflows.

Usage
hospital_staff

Format
A list containing eight related datasets:

basic_costs A 10x10 numeric cost matrix for assigning 10 nurses to 10 shifts. Values range from
approximately 1-15, where lower values indicate better fit (less overtime, matches skills, re-
spects preferences). Use with lap_solve() for basic assignment.

preferences A 10x10 numeric preference matrix on a 0-10 scale, where higher values indicate
stronger nurse preference for a shift. Use with lap_solve(..., maximize = TRUE) to opti-
mize preferences rather than minimize costs.

schedule_df A tibble with 100 rows (10 nurses x 10 shifts) in long format for data frame work-
flows:
nurse_id Integer 1-10. Unique identifier for each nurse.
shift_id Integer 1-10. Unique identifier for each shift.
cost Numeric. Assignment cost (same values as basic_costs).
preference Numeric 0-10. Nurse preference score.
skill_match Integer 0/1. Binary indicator: 1 if nurse skills match shift requirements, O other-
wise.
nurses A tibble with 10 rows describing nurse characteristics:

nurse_id Integer 1-10. Links to schedule_df and basic_costs rows.
experience_years Numeric 1-20. Years of nursing experience.
department Character. Primary department: "ICU", "ER", "General", or "Pediatrics".
shift_preference Character. Preferred shift type: "day", "evening", or "night".
certification_level Integer 1-3. Certification level where 3 is highest (e.g., 1=RN, 2=BSN,
3=MSN).
shifts A tibble with 10 rows describing shift requirements:

shift_id Integer 1-10. Links to schedule_df and basic_costs cols.
department Character. Department needing coverage.

shift_type Character. Shift type: "day", "evening", or "night".
min_experience Numeric. Minimum years of experience required.

22 hospital_staff

min_certification Integer 1-3. Minimum certification level.
weekly_df A tibble for batch solving with 500 rows (5 days x 10 nurses x 10 shifts):

day Character. Day of week: "Mon", "Tue", "Wed", "Thu", "Fri".
nurse_id Integer 1-10. Nurse identifier.

shift_id Integer 1-10. Shift identifier.

cost Numeric. Daily assignment cost (varies by day).

preference Numeric 0-10. Daily preference score.

Use with group_by (day) for solving each day’s schedule.

nurses_extended A tibble with 200 nurses for matching examples, representing a treatment group
(e.g., full-time nurses):

nurse_id Integer 1-200. Unique identifier.

age Numeric 22-65. Nurse age in years.

experience_years Numeric 0-40. Years of nursing experience.
hourly_rate Numeric 25-75. Hourly wage in dollars.
department Character. Primary department assignment.
certification_level Integer 1-3. Certification level.

is_fulltime Logical. TRUE for full-time status.

controls_extended A tibble with 300 potential control nurses (e.g., part-time or registry nurses)
for matching. Same structure as nurses_extended. Designed to have systematic differences
from nurses_extended (older, less experience on average) to demonstrate matching’s ability to
create comparable groups.

Details

This dataset is used throughout the couplr documentation to provide a consistent, realistic example
that evolves in complexity. It supports three use cases: (1) basic LAP solving with cost matrices,
(2) batch solving across multiple days, and (3) matching workflows comparing nurse groups.

The dataset is designed to demonstrate progressively complex scenarios:
Basic LAP (vignette("getting-started”)):

* basic_costs: Simple 10x10 assignment
» preferences: Maximization problem
* schedule_df: Data frame input, grouped workflows

* weekly_df: Batch solving across days
Algorithm comparison (vignette("algorithms")):

* Use basic_costs to compare algorithm behavior

* Modify with NA values for sparse scenarios
Matching workflows (vignette("matching-workflows")):

* nurses_extended: Treatment group (full-time nurses)
* controls_extended: Control pool (part-time/registry nurses)

* Match on age, experience, department for causal analysis

is_distance_object 23

See Also

lap_solve for basic assignment solving, lap_solve_batch for batch solving, match_couples for
matching workflows, vignette(”getting-started”) for introductory tutorial

Examples

Basic assignment: assign nurses to shifts minimizing cost
lap_solve(hospital_staff$basic_costs)

Maximize preferences instead
lap_solve(hospital_staff$preferences, maximize = TRUE)

Data frame workflow

library(dplyr)

hospital_staff$schedule_df |>
lap_solve(nurse_id, shift_id, cost)

Batch solve weekly schedule

hospital_staff$weekly_df |>
group_by(day) [|>
lap_solve(nurse_id, shift_id, cost)

Matching workflow: match full-time to part-time nurses
match_couples(

left = hospital_staff$nurses_extended,

right = hospital_staff$controls_extended,

vars = c("age"”, "experience_years”, "certification_level"),
auto_scale = TRUE
)
is_distance_object Check if Object is a Distance Object
Description

Check if Object is a Distance Object

Usage

is_distance_object(x)

Arguments

X Object to check

Value

Logical: TRUE if x is a distance_object

24

Examples

left <- data.frame(id = 1:3, x = c(1, 2, 3))

right <- data.frame(id = 4:6, x = c(1.1, 2.1, 3.1))
dist_obj <- compute_distances(left, right, vars = "x")
is_distance_object(dist_obj) # TRUE
is_distance_object(list()) # FALSE

is_lap_solve_kbest_result

is_lap_solve_batch_result
Check if object is a batch assignment result

Description

Check if object is a batch assignment result

Usage

is_lap_solve_batch_result(x)

Arguments

X Object to test

Value

Logical indicating if x is a batch assignment result

is_lap_solve_kbest_result
Check if object is a k-best assignment result

Description

Check if object is a k-best assignment result

Usage

is_lap_solve_kbest_result(x)

Arguments

X Object to test

Value

Logical indicating if x is a k-best assignment result

is_lap_solve_result 25

is_lap_solve_result Check if object is an assignment result

Description

Check if object is an assignment result

Usage

is_lap_solve_result(x)

Arguments

X Object to test

Value

Logical indicating if x is an assignment result

join_matched Join Matched Pairs with Original Data

Description

Creates an analysis-ready dataset by joining matched pairs with variables from the original left
and right datasets. This eliminates the need for manual joins and provides a convenient format for
downstream analysis.

Usage

join_matched(
result,
left,
right,
left_vars = NULL,
right_vars = NULL,

left_id = "id",
right_id = "id",
suffix = c("_left", "_right"),

include_distance = TRUE,
include_pair_id = TRUE,
include_block_id = TRUE

26 Jjoin_matched

Arguments

result A matching_result object from match_couples() or greedy_couples()

left The original left dataset

right The original right dataset

left_vars Character vector of variable names to include from left. If NULL (default),
includes all variables except the ID column.

right_vars Character vector of variable names to include from right. If NULL (default),
includes all variables except the ID column.

left_id Name of the ID column in left dataset (default: "id")

right_id Name of the ID column in right dataset (default: "id")

suffix Character vector of length 2 specifying suffixes for left and right variables (de-

fault: c("_left", "_right"))

include_distance
Include the matching distance in output (default: TRUE)

include_pair_id
Include pair_id column (default: TRUE)

include_block_id
Include block_id if blocking was used (default: TRUE)

Details

This function simplifies the common workflow of joining matched pairs with original data. Instead
of manually merging result$pairs with left and right datasets, join_matched() handles the joins
automatically and applies consistent naming conventions.

When variables appear in both left and right datasets, suffixes are appended to distinguish them
(e.g., "age_left" and "age_right"). This makes it easy to compute differences or use both values in
models.

Value

A tibble with one row per matched pair, containing:

* pair_id: Sequential pair identifier (if include_pair_id = TRUE)

e left_id: ID from left dataset

e right_id: ID from right dataset

» distance: Matching distance (if include_distance = TRUE)

* block_id: Block identifier (if blocking used and include_block_id = TRUE)
¢ Variables from left dataset (with left suffix)

* Variables from right dataset (with right suffix)

lap_solve 27

Examples

Basic usage
left <- data.frame(

id = 1:5,

treatment = 1,

age = c(25, 30, 35, 40, 45),

income = c(45000, 52000, 48000, 61000, 55000)
)

right <- data.frame(

id = 6:10,

treatment = 0,

age = c(24, 29, 36, 41, 44),

income = c(46000, 51500, 47500, 60000, 54000)
)

result <- match_couples(left, right, vars = c("age"”, "income"))
matched_data <- join_matched(result, left, right)
head(matched_data)

Specify which variables to include
matched_data <- join_matched(
result, left, right,

left_vars = c("treatment”, "age", "income"),
right_vars = c("age", "income"),
suffix = c("_treated”, "_control”)

Without distance or pair_id

matched_data <- join_matched(
result, left, right,
include_distance = FALSE,
include_pair_id = FALSE

)

lap_solve Solve linear assignment problems

Description

Provides a tidy interface for solving the linear assignment problem using *Hungarian’ or ’Jonker-
Volgenant’ algorithms. Supports rectangular matrices, NA/Inf masking, and data frame inputs.

Usage

lap_solve(
X)
source = NULL,

28 lap_solve

target = NULL,

cost = NULL,
maximize = FALSE,
method = "auto",
forbidden = NA
)
Arguments
X Cost matrix, data frame, or tibble. If a data frame/tibble, must include columns
specified by source, target, and cost.
source Column name for source/row indices (if x is a data frame)
target Column name for target/column indices (if x is a data frame)
cost Column name for costs (if x is a data frame)
maximize Logical; if TRUE, maximizes total cost instead of minimizing (default: FALSE)
method Algorithm to use. One of:
e "auto" (default): automatically selects best algorithm
* "jv": ’Jonker-Volgenant’ algorithm (general purpose, fast)
* "hungarian": Classic 'Hungarian’ algorithm
* "auction": ’Bertsekas’ auction algorithm (good for large dense problems)
* "sap": Sparse assignment (good for sparse/rectangular problems)
* "hkO1": *"Hopcroft-Karp’ for binary/uniform costs
forbidden Value to mark forbidden assignments (default: NA). Can also use Inf.
Value

A tibble with columns:

* source: row/source indices
* target: column/target indices
* cost: cost of each assignment

e total_cost: total cost (attribute)

Examples

Matrix input
cost <- matrix(c(4, 2, 5, 3, 3, 6, 7, 5, 4), nrow = 3)
lap_solve(cost)

Data frame input
library(dplyr)
df <- tibble(
source = rep(1:3, each = 3)
target = rep(1:3, times = 3
cost = c(4, 2, 5, 3, 3, 6,
)

lap_solve(df, source, target, cost)

)7
7,5, 4

lap_solve_batch 29

With NA masking (forbidden assignments)
cost[1, 3] <- NA
lap_solve(cost)

Grouped data frames
df <- tibble(
sim = rep(1:2, each = 9),
source = rep(1:3, times = 6),
target = rep(1:3, each = 3, times = 2),
cost = runif (18, 1, 10)
)

df |> group_by(sim) |> lap_solve(source, target, cost)

lap_solve_batch Solve multiple assignment problems efficiently

Description

Solve many independent assignment problems at once. Supports lists of matrices, 3D arrays, or
grouped data frames. Optional parallel execution via n_threads.

Usage

lap_solve_batch(
X,
source = NULL,
target = NULL,

cost = NULL,
maximize = FALSE,
method = "auto”,

n_threads = 1,
forbidden = NA

)
Arguments
X One of: List of cost matrices, 3D array, or grouped data frame
source Column name for source indices (if x is a grouped data frame)
target Column name for target indices (if x is a grouped data frame)
cost Column name for costs (if x is a grouped data frame)
maximize Logical; if TRUE, maximizes total cost (default: FALSE)
method Algorithm to use (default: "auto"). See lap_solve for options.
n_threads Number of threads for parallel execution (default: 1). Set to NULL to use all

available cores.

forbidden Value to mark forbidden assignments (default: NA)

30 lap_solve_kbest

Value

A tibble with columns:

* problem_id: identifier for each problem
* source: source indices for assignments
* target: target indices for assignments

* cost: cost of each assignment

* total_cost: total cost for each problem

* method_used: algorithm used for each problem

Examples

List of matrices
costs <- list(
matrix(c(1, 2, 3, 4), 2, 2),
matrix(c(5, 6, 7, 8), 2, 2)
)

lap_solve_batch(costs)

3D array
arr <- array(runif(2 * 2 * 10), dim
lap_solve_batch(arr)

c(2, 2, 10))

Grouped data frame

library(dplyr)

df <- tibble(
sim = rep(1:5, each = 9),
source = rep(1:3, times = 15),
target = rep(1:3, each = 3, times
cost = runif(45, 1, 10)

)

df |> group_by(sim) |> lap_solve_batch(source, target, cost)

5)7

Parallel execution (requires n_threads > 1)
lap_solve_batch(costs, n_threads = 2)

lap_solve_kbest Find k-best optimal assignments

Description

Returns the top k optimal (or near-optimal) assignments using *Murty’ algorithm. Useful for ex-
ploring alternative optimal solutions or finding robust assignments.

lap_solve_kbest

31

Usage
lap_solve_kbest(
X,
k = 3,

source = NULL,
target = NULL,

cost = NULL,

maximize = FALSE,
method = "murty”,
single_method = "jv",
forbidden = NA

Arguments

X

k

source
target
cost
maximize

method

single_method
forbidden

Value

Cost matrix, data frame, or tibble. If a data frame/tibble, must include columns
specified by source, target, and cost.

Number of best solutions to return (default: 3)

Column name for source/row indices (if x is a data frame)

Column name for target/column indices (if x is a data frame)

Column name for costs (if x is a data frame)

Logical; if TRUE, finds k-best maximizing assignments (default: FALSE)

Algorithm for each sub-problem (default: "murty"). Future versions may sup-
port additional methods.

Algorithm used for solving each node in the search tree (default: "jv")

Value to mark forbidden assignments (default: NA)

A tibble with columns:

* rank: ranking of solutions (1 = best, 2 = second best, etc.)

* solution_id: unique identifier for each solution

e source: source indices

* target: target indices

* cost: cost of each edge in the assignment

* total_cost: total cost of the complete solution

Examples

Matrix input - find 5 best solutions
cost <- matrix(c(4, 2, 5, 3, 3, 6, 7, 5, 4), nrow = 3)
lap_solve_kbest(cost, k = 5)

Data frame input

32 lap_solve_line_metric

library(dplyr)
df <- tibble(
source = rep(1:3, each = 3),
target = rep(1:3, times = 3),
cost = c(4, 2, 5, 3, 3,6, 7,5, 4)
)
lap_solve_kbest(df, k = 3, source, target, cost)

With maximization
lap_solve_kbest(cost, k = 3, maximize = TRUE)

lap_solve_line_metric Solve I-D Line Assignment Problem

Description

Solves the linear assignment problem when both sources and targets are ordered points on a line.
Uses efficient O(n*m) dynamic programming for rectangular problems and O(n) sorting for square

problems.
Usage
lap_solve_line_metric(x, y, cost = "L1", maximize = FALSE)
Arguments
X Numeric vector of source positions (will be sorted internally)
y Numeric vector of target positions (will be sorted internally)
cost Cost function for distance. Either:
e "L1" (default): absolute distance ("Manhattan’ distance)
e "L2": squared distance (squared 'Euclidean’ distance) Can also use aliases:
"abs", "manhattan" for L1; "sq", "squared", "quadratic" for L2
maximize Logical; if TRUE, maximizes total cost instead of minimizing (default: FALSE)
Details

This is a specialized solver that exploits the structure of 1-dimensional assignment problems where
costs depend only on the distance between points on a line. It is much faster than general LAP
solvers for this special case.

The algorithm works as follows:

Square case (n == m): Both vectors are sorted and matched in order: x[1] -> y[1], x[2] -> y[2],
etc. This is optimal for any metric cost function on a line.

Rectangular case (n <m): Uses dynamic programming to find the optimal assignment that matches
all n sources to a subset of the m targets, minimizing total distance. The DP recurrence is:

matchmaker 33

dp[i1[j1 =min(dplil[j-11, dpLi-11[j-11 + cost(x[il, y[31))
This finds the minimum cost to match the first i sources to the first j targets.

Complexity:

* Time: O(n*m) for rectangular, O(n log n) for square

* Space: O(n*m) for DP table

Value

A list with components:

* match: Integer vector of length n with 1-based column indices

* total_cost: Total cost of the assignment

Examples

Square case: equal number of sources and targets
x <- ¢(1.5, 3.2, 5.1)

y <- ¢(2.0, 3.0, 5.5)

result <- lap_solve_line_metric(x, y, cost = "L1")
print(result)

Rectangular case: more targets than sources

x <- c(1.0, 3.0, 5.0)

y <- c(0.5, 2.0, 3.5, 4.5, 6.0)

result <- lap_solve_line_metric(x, y, cost = "L2")
print(result)

With unsorted inputs (will be sorted internally)
x <- c(5.0, 1.0, 3.0)
y <- c(4.5, 0.5, 6.0, 2.0, 3.5)

result <- lap_solve_line_metric(x, y, cost = "L1")
print(result)
matchmaker Create blocks for stratified matching
Description

Constructs blocks (strata) for matching, using either grouping variables or clustering algorithms.
Returns the input data frames with block IDs assigned, along with block summary statistics.

34 matchmaker

Usage

matchmaker (
left,
right,
block_type = c("none”, "group”, "cluster”),
block_by = NULL,
block_vars = NULL,
block_method = "kmeans”,
n_blocks = NULL,
min_left = 1,
min_right = 1,
drop_imbalanced = FALSE,
imbalance_threshold = Inf,
return_dropped = TRUE,

Arguments

left Data frame of "left" units (e.g., treated, cases)
right Data frame of "right" units (e.g., control, controls)
block_type Type of blocking to use:

* "none": No blocking (default)

* "group": Block by existing categorical variable(s)

* "cluster": Block using clustering algorithm
block_by Variable name(s) for grouping (if block_type = "group")
block_vars Variable names for clustering (if block_type = "cluster")

block_method Clustering method (if block_type = "cluster"):

* "kmeans": K-means clustering
* "hclust": Hierarchical clustering

n_blocks Target number of blocks (for clustering)
min_left Minimum number of left units per block
min_right Minimum number of right units per block

drop_imbalanced

Drop blocks with extreme imbalance
imbalance_threshold

Maximum allowed In_left - n_rightl / max(n_left, n_right)

return_dropped Include dropped blocks in output

Additional arguments passed to clustering function

Details

This function does NOT perform matching - it only creates the block structure. Use match_couples()
or greedy_couples() to perform matching within blocks.

match_couples 35

Value
A list with class "matchmaker_result" containing:

» left: Left data frame with block_id column added

* right: Right data frame with block_id column added
* block_summary: Summary statistics for each block

* dropped: Information about dropped blocks (if any)
* info: Metadata about blocking process

Examples

Group blocking

left <- data.frame(id = 1:10, region = rep(c("A", "B"), each = 5), x = rnorm(10))
right <- data.frame(id = 11:20, region = rep(c("A", "B"), each = 5), x = rnorm(10))
blocks <- matchmaker(left, right, block_type = "group”, block_by = "region")
print(blocks$block_summary)

Clustering
blocks <- matchmaker(left, right, block_type = "cluster”,

nyn

block_vars = "x", n_blocks = 3)

match_couples Optimal matching using linear assignment

Description

Performs optimal one-to-one matching between two datasets using linear assignment problem (LAP)
solvers. Supports blocking, distance constraints, and various distance metrics.

Usage

match_couples(
left,
right = NULL,
vars = NULL,
distance = "euclidean”,
weights = NULL,
scale = FALSE,
auto_scale = FALSE,
max_distance = Inf,
calipers = NULL,
block_id = NULL,
ignore_blocks = FALSE,
require_full_matching = FALSE,
method = "auto",

36 match_couples
return_unmatched = TRUE,
return_diagnostics = FALSE,
parallel = FALSE,
check_costs = TRUE
)
Arguments
left Data frame of "left" units (e.g., treated, cases)
right Data frame of "right" units (e.g., control, controls)
vars Variable names to use for distance computation
distance Distance metric: "euclidean", "manhattan”, "mahalanobis”, or a custom function
weights Optional named vector of variable weights
scale Scaling method: FALSE (none), "standardize", "range", or "robust"
auto_scale If TRUE, automatically check variable health and select scaling method (default:
FALSE)
max_distance Maximum allowed distance (pairs exceeding this are forbidden)
calipers Named list of per-variable maximum absolute differences
block_id Column name containing block IDs (for stratified matching)

ignore_blocks If TRUE, ignore block_id even if present
require_full_matching
If TRUE, error if any units remain unmatched
method LAP solver: "auto", "hungarian", "jv", "gabow_tarjan", etc.
return_unmatched
Include unmatched units in output
return_diagnostics
Include detailed diagnostics in output
parallel Enable parallel processing for blocked matching. Requires ’future’ and ’fu-
ture.apply’ packages. Can be:
e FALSE: Sequential processing (default)
* TRUE: Auto-configure parallel backend
* Character: Specify future plan (e.g., "multisession”, "multicore")
check_costs If TRUE, check distance distribution for potential problems and provide helpful
warnings before matching (default: TRUE)

Details

This function finds the matching that minimizes total distance among all feasible matchings, subject
to constraints. Use greedy_couples() for faster approximate matching on large datasets.

Value

A list with class "matching_result" containing:

* pairs: Tibble of matched pairs with distances
* unmatched: List of unmatched left and right IDs
* info: Matching diagnostics and metadata

pixel_morph 37

Examples

Basic matching

left <- data.frame(id = 1:5, x = c(1, 2, 3
right <- data.frame(id =6:10, x =c(1.1, 2.2
result <- match_couples(left, right, vars
print(result$pairs)

4, 5), y =c(2, 4, 6, 8, 10))
3.1, 4.2,5.1), y=c(2.1, 4.1, 6.2, 8.1, 10.1))
C("X”’ IVyII))

’

With constraints

result <- match_couples(left, right, vars = c("x", "y"),
max_distance = 1,
calipers = list(x = 0.5))

With blocking

1ef‘t$region <_ C(I,A”, IIAII’ IIBIV’ IVBVI, VIBII)

right$region <- c("A", "A", "B", "B", "B")

blocks <- matchmaker(left, right, block_type = "group”, block_by = "region")
result <- match_couples(blocks$left, blocks$right, vars = c("x", "y"))

pixel_morph Pixel-level image morphing (final frame only)

Description

Computes optimal pixel assignment from A to B and returns the final transported frame (without
intermediate animation frames).

Usage
pixel_morph(
imgA,
imgB,
n_frames = 16L,
mode = c("color_walk"”, "exact", "recursive"),

lap_method = "jv",
maximize = FALSE,
quantize_bits = 5L,
downscale_steps = 0L,
alpha = 1,

beta = 0,

patch_size = 1L,
upscale = 1,

show = interactive()

38 pixel_morph
Arguments

imgA Source image (file path or magick image object)

imgB Target image (file path or magick image object)

n_frames Internal parameter for rendering (default: 16)

mode Assignment algorithm: "color_walk" (default), "exact", or "recursive"

lap_method LAP solver method (default: "jv'")

maximize Logical, maximize instead of minimize cost (default: FALSE)

quantize_bits Color quantization for "color_walk" mode (default: 5)
downscale_steps
Number of 2x reductions before computing assignment (default: 0)

alpha Weight for color distance in cost function (default: 1)

beta Weight for spatial distance in cost function (default: 0)

patch_size Tile size for tiled modes (default: 1)

upscale Post-rendering upscaling factor (default: 1)

show Logical, display result in viewer (default: interactive())
Details

Transport-Only Semantics:
This function returns a SHARP, pixel-perfect transport of A’s pixels to positions determined by
the assignment to B.
Key Points:
* Assignment computed using: cost = alpha * color_dist + beta * spatial_dist
* B’s COLORS influence assignment but DO NOT appear in output
* Result has A’s colors arranged to match B’s layout
¢ No motion blur (unlike intermediate frames in animation)

See pixel_morph_animate for detailed explanation of assignment vs rendering semantics.

Permutation Warnings:

Assignment is guaranteed to be a bijection (permutation) ONLY when:
* downscale_steps = @ (no resolution changes)
¢ mode = "exact"” with patch_size =1

With downscaling or tiled modes, assignment may have:

* Overlaps: Multiple source pixels map to same destination (last write wins)
* Holes: Some destinations never filled (remain transparent)

If assignment is not a bijection (due to downscaling or tiling), a warning will be issued. The result
may contain:

* Overlapped pixels (multiple sources -> one destination)
* Transparent holes (some destinations unfilled)

For guaranteed pixel-perfect results, use:

pixel_morph(A, B, mode = "exact”, downscale_steps = 0)

pixel_morph_animate 39

Value

magick image object of the final transported frame

See Also

pixel_morph_animate for animated version

Examples

if (requireNamespace("magick”, quietly = TRUE)) {
imgA <- system.file("extdata/icons/circleA_40.png", package = "couplr")
imgB <- system.file("”extdata/icons/circleB_40.png", package = "couplr")
if (nzchar(imgA) && nzchar(imgB)) {
result <- pixel_morph(imgA, imgB, n_frames = 4, show = FALSE)
}
3

pixel_morph_animate Pixel-level image morphing (animation)

Description

Creates an animated morph by computing optimal pixel assignment from image A to image B, then
rendering intermediate frames showing the transport.

Usage
pixel_morph_animate(
imgA,
imgB,
n_frames = 16L,
fps = 10L,

format = c("gif"”, "webp"”, "mp4"),
outfile = NULL,

show = interactive(),

mode = c("color_walk"”, "exact", "recursive"),
lap_method = "jv",

maximize = FALSE,

quantize_bits = 5L,
downscale_steps = 0L,

alpha = 1,

beta = 0,

patch_size = 1L,

upscale =1

40 pixel_morph_animate

Arguments
imgA Source image (file path or magick image object)
imgB Target image (file path or magick image object)
n_frames Integer number of animation frames (default: 16)
fps Frames per second for playback (default: 10)
format Output format: "gif", "webp", or "mp4"
outfile Optional output file path
show Logical, display animation in viewer (default: interactive())
mode Assignment algorithm: "color_walk" (default), "exact", or "recursive"
lap_method LAP solver method (default: "jv"
maximize Logical, maximize instead of minimize cost (default: FALSE)

quantize_bits Color quantization for "color_walk" mode (default: 5)
downscale_steps
Number of 2x reductions before computing assignment (default: 0)

alpha Weight for color distance in cost function (default: 1)
beta Weight for spatial distance in cost function (default: 0)
patch_size Tile size for tiled modes (default: 1)
upscale Post-rendering upscaling factor (default: 1)

Details

Assignment vs Rendering Semantics:
CRITICAL: This function has two separate phases with different semantics:
Phase 1 - Assignment Computation:
The assignment is computed by minimizing:

cost(i,j) = alpha * color_distance(A[i], B[j1) +

beta * spatial_distance(pos_i, pos_j)

This means B’s COLORS influence which pixels from A map to which positions.
Phase 2 - Rendering (Transport-Only):
The renderer uses ONLY A’s colors:

¢ Intermediate frames: A’s pixels move along paths with motion blur
* Final frame: A’s pixels at their assigned positions (sharp, no blur)
* B’s colors NEVER appear in the output

Result: You get A’s colors rearranged to match B’s geometry/layout.

What This Means:

* B influences WHERE pixels go (via similarity in cost function)
* B does NOT determine WHAT COLORS appear in output
* Final image has A’s palette arranged to mimic B’s structure

pixel_morph_animate

Parameter Guidance:

For pure spatial rearrangement (ignore B’s colors in assignment):

pixel_morph_animate(A, B, alpha = @, beta = 1)
For color-similarity matching (default):
pixel_morph_animate(A, B, alpha = 1, beta = @)

For hybrid (color + spatial):

pixel_morph_animate(A, B, alpha = 1, beta = 0.2)

Permutation Guarantees:
Assignment is guaranteed to be a bijection (permutation) ONLY when:

* downscale_steps = @ (no resolution changes)
¢ mode = "exact” with patch_size =1

With downscaling or tiled modes, assignment may have:

* Overlaps: Multiple source pixels map to same destination (last write wins)

* Holes: Some destinations never filled (remain transparent)

A warning is issued if overlaps/holes are detected in the final frame.

Value

Invisibly returns a list with animation object and metadata:

animation magick animation object
width Image width in pixels
height Image height in pixels
assignment Integer vector of 1-based assignment indices (R convention)
n_pixels Total number of pixels
mode Mode used for matching
upscale Upscaling factor applied
Examples

if (requireNamespace("magick”, quietly = TRUE)) {
imgA <- system.file("”extdata/icons/circleA_40@.png", package = "couplr")
imgB <- system.file("extdata/icons/circleB_40.png", package = "couplr")
if (nzchar(imgA) && nzchar(imgB)) {
outfile <- tempfile(fileext = ".gif")
pixel_morph_animate(imgA, imgB, outfile = outfile, n_frames = 4, show = FALSE)
}
}

41

42 plot.matching_result

plot.balance_diagnostics
Plot method for balance diagnostics

Description

Produces a Love plot (dot plot) of standardized differences.

Usage

S3 method for class 'balance_diagnostics'

plot(x, type = c("love”, "histogram”, "variance"), threshold = 0.1, ...)
Arguments

X A balance_diagnostics object

type Type of plot: "love" (default), "histogram", or "variance"

threshold Threshold line for standardized differences (default: 0.1)

Additional arguments passed to plotting functions

Value

The balance_diagnostics object (invisibly)

plot.matching_result Plot method for matching results

Description

Produces a histogram of pairwise distances from a matching result.

Usage

S3 method for class 'matching_result'

plot(x, type = c("histogram”, "density”, "ecdf"), ...)
Arguments

X A matching_result object

type Type of plot: "histogram" (default), "density", or "ecdf"

Additional arguments passed to plotting functions

Value

The matching_result object (invisibly)

preprocess_matching_vars 43

preprocess_matching_vars
Preprocess matching variables with automatic checks and scaling

Description

Main preprocessing function that orchestrates variable health checks, categorical encoding, and
automatic scaling selection.

Usage
preprocess_matching_vars(
left,
right,
vars,
auto_scale = TRUE,
scale_method = "auto”,

check_health = TRUE,
remove_problematic = TRUE,
verbose = TRUE

)
Arguments
left Data frame of left units
right Data frame of right units
vars Character vector of variable names
auto_scale Logical, whether to perform automatic preprocessing (default: TRUE)

non

scale_method Scaling method: "auto", "standardize", "range", "robust", or FALSE

check_health Logical, whether to check variable health (default: TRUE)
remove_problematic
Logical, automatically exclude constant/all-NA variables (default: TRUE)

verbose Logical, whether to print warnings (default: TRUE)

Value
A list with class "preprocessing_result" containing:

» left: Preprocessed left data frame

* right: Preprocessed right data frame

¢ vars: Final variable names (after exclusions)
* health: Variable health diagnostics

* scaling_method: Selected scaling method

* excluded_vars: Variables that were excluded

* warnings: List of warnings issued

44

print.distance_object

print.balance_diagnostics
Print Method for Balance Diagnostics

Description

Print Method for Balance Diagnostics

Usage

S3 method for class 'balance_diagnostics'
print(x, ...)

Arguments
X A balance_diagnostics object
Additional arguments (ignored)
Value

Invisibly returns the input object x.

print.distance_object Print Method for Distance Objects

Description

Print Method for Distance Objects

Usage

S3 method for class 'distance_object'
print(x, ...)

Arguments
X A distance_object
Additional arguments (ignored)
Value

Invisibly returns the input object x.

print.lap_solve_batch_result 45

print.lap_solve_batch_result
Print method for batch assignment results

Description

Prints a summary and the table of results for a batch of assignment problems solved with lap_solve_batch().

Usage
S3 method for class 'lap_solve_batch_result'
print(x, ...)
Arguments
X A lap_solve_batch_result object.
Additional arguments passed to print(). Currently ignored.
Value

Invisibly returns the input object x.

print.lap_solve_kbest_result
Print method for k-best assignment results

Description

Print method for k-best assignment results

Usage
S3 method for class 'lap_solve_kbest_result'
print(x, ...)
Arguments
X A lap_solve_kbest_result.
Additional arguments passed to print (). Ignored.
Value

Invisibly returns the input object x.

46 print.matching_result

print.lap_solve_result
Print method for assignment results

Description

Nicely prints a lap_solve_result object, including the assignments, total cost, and method used.

Usage
S3 method for class 'lap_solve_result'
print(x, ...)
Arguments
X A lap_solve_result object.
Additional arguments passed to print(). Currently ignored.
Value

Invisibly returns the input object x.

print.matching_result Print method for matching results

Description

Print method for matching results

Usage
S3 method for class 'matching_result'
print(x, ...)
Arguments
X A matching_result object
Additional arguments (ignored)
Value

Invisibly returns the input object x.

print.matchmaker._result

47

print.matchmaker_result
Print method for matchmaker results

Description

Print method for matchmaker results

Usage
S3 method for class 'matchmaker_result'
print(x, ...)
Arguments
X A matchmaker_result object
Additional arguments (ignored)
Value

Invisibly returns the input object x.

print.preprocessing_result
Print method for preprocessing result

Description

Print method for preprocessing result

Usage
S3 method for class 'preprocessing_result'
print(x, ...)
Arguments
X A preprocessing_result object
Additional arguments (ignored)
Value

Invisibly returns the input object x.

48 sinkhorn

print.variable_health Print method for variable health

Description

Print method for variable health

Usage
S3 method for class 'variable_health'
print(x, ...)
Arguments
X A variable_health object
Additional arguments (ignored)
Value

Invisibly returns the input object x.

sinkhorn "Sinkhorn-Knopp’ optimal transport solver

Description

Compute an entropy-regularized optimal transport plan using the ’Sinkhorn-Knopp’ algorithm. Un-
like other LAP solvers that return a hard 1-to-1 assignment, this returns a soft assignment (doubly
stochastic matrix).

Usage
sinkhorn(
cost,
lambda = 10,
tol = 1e-09,

max_iter = 1000,
r_weights = NULL,
c_weights = NULL

sinkhorn

Arguments

cost

lambda

tol

max_iter

r_weights

c_weights

Details

49

Numeric matrix of transport costs. NA or Inf entries are treated as very high cost
(effectively forbidden).

Regularization parameter (default 10). Higher values produce sharper (more de-
terministic) transport plans; lower values produce smoother distributions. Typi-
cal range: 1-100.

Convergence tolerance (default 1e-9).
Maximum iterations (default 1000).

Optional numeric vector of row marginals (source distribution). Default is uni-
form. Will be normalized to sum to 1.

Optional numeric vector of column marginals (target distribution). Default is
uniform. Will be normalized to sum to 1.

The ’Sinkhorn-Knopp’ algorithm solves the entropy-regularized optimal transport problem:

P* = argmin(C, P) - %H(P)

subject to row sums = r_weights and column sums = c_weights.

The entropy term H(P) encourages spread in the transport plan. As lambda -> Inf, the solution
approaches the standard (unregularized) optimal transport.

Key differences from standard LAP solvers:

* Returns a soft assignment (probabilities) not a hard 1-to-1 matching

* Supports unequal marginals (weighted distributions)

* Differentiable, making it useful in ML pipelines

* Very fast: O(n”2) per iteration with typically O(1/tol"2) iterations

Use sinkhorn_to_assignment() to round the soft assignment to a hard matching.

Value

A list with elements:

* transport_plan — numeric matrix, the optimal transport plan P. Row sums approximate
r_weights, column sums approximate c_weights.

* cost — the transport cost <C, P> (without entropy term).

* u, v — scaling vectors (P = diag(u) * K * diag(v) where K = exp(-lambda*C)).

» converged — logical, whether the algorithm converged.

e iterations — number of iterations used.

* lambda — the regularization parameter used.

50 sinkhorn_to_assignment

References

Cuturi, M. (2013). ’Sinkhorn Distances’: Lightspeed Computation of Optimal Transport. Advances
in Neural Information Processing Systems, 26.

See Also

assignment() for hard 1-to-1 matching, sinkhorn_to_assignment() to round soft assignments.

Examples

cost <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow = 3, byrow = TRUE)

Soft assignment with default parameters
result <- sinkhorn(cost)
print(round(result$transport_plan, 3))

Sharper assignment (higher lambda)
result_sharp <- sinkhorn(cost, lambda = 50)
print(round(result_sharp$transport_plan, 3))

With custom marginals (more mass from row 1)
result_weighted <- sinkhorn(cost, r_weights = c(0.5, 0.25, 0.25))
print(round(result_weighted$transport_plan, 3))

Round to hard assignment
hard_match <- sinkhorn_to_assignment(result)
print(hard_match)

sinkhorn_to_assignment
Round ’Sinkhorn’ transport plan to hard assignment

Description

Convert a soft transport plan from sinkhorn() to a hard 1-to-1 assignment using greedy rounding.

Usage

sinkhorn_to_assignment(result)

Arguments

result Either a result from sinkhorn() or a transport plan matrix.

Details

Greedy rounding iteratively assigns each row to its most probable column, ensuring no column is
assigned twice. This may not give the globally optimal hard assignment; for that, use the transport
plan as a cost matrix with assignment().

summary.balance_diagnostics 51

Value

Integer vector of column assignments (1-based), same format as assignment().

See Also

sinkhorn()

Examples

cost <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow = 3, byrow = TRUE)
result <- sinkhorn(cost, lambda = 20)

hard_match <- sinkhorn_to_assignment(result)

print(hard_match)

summary.balance_diagnostics
Summary method for balance diagnostics

Description

Summary method for balance diagnostics

Usage
S3 method for class 'balance_diagnostics'
summary (object, ...)

Arguments
object A balance_diagnostics object

Additional arguments (ignored)

Value

A list containing summary statistics (invisibly)

52

summary.lap_solve_kbest_result

summary.distance_object
Summary Method for Distance Objects

Description

Summary Method for Distance Objects

Usage
S3 method for class 'distance_object'
summary (object, ...)

Arguments
object A distance_object

Additional arguments (ignored)

Value

Invisibly returns the input object.

summary.lap_solve_kbest_result
Get summary of k-best results

Description

Extract summary information from k-best assignment results.

Usage
S3 method for class 'lap_solve_kbest_result'
summary (object, ...)

Arguments
object An object of class lap_solve_kbest_result.

Additional arguments (unused).

summary.matching_result 53

Value

A tibble with one row per solution containing:

¢ rank: solution rank
e solution_id: solution identifier
e total_cost: total cost of the solution

* n_assignments: number of assignments in the solution

summary.matching_result
Summary method for matching results

Description

Summary method for matching results

Usage
S3 method for class 'matching_result'
summary(object, ...)

Arguments
object A matching_result object

Additional arguments (ignored)

Value

A list containing summary statistics (invisibly)

update_constraints Update Constraints on Distance Object

Description

Apply new constraints to a precomputed distance object without recomputing the underlying dis-
tances. This is useful for exploring different constraint scenarios quickly.

Usage

update_constraints(dist_obj, max_distance = Inf, calipers = NULL)

54 update_constraints

Arguments
dist_obj A distance_object from compute_distances()
max_distance Maximum allowed distance (pairs with distance > max_distance become Inf)

calipers Named list of per-variable calipers

Details

This function creates a new distance_object with modified constraints applied to the cost matrix.
The original distance_object is not modified.

Constraints:
* max_distance: Sets cost to Inf for pairs exceeding this threshold
* calipers: Per-variable restrictions (e.g., calipers = list(age = 5))

The function returns a new object rather than modifying in place, following R’s copy-on-modify
semantics.

Value

A new distance_object with updated cost_matrix

Examples

left <- data.frame(id = 1:5, age = c(25, 30, 35, 40, 45))
right <- data.frame(id = 6:10, age = c(24, 29, 36, 41, 44))
dist_obj <- compute_distances(left, right, vars = "age")

Apply constraints
constrained <- update_constraints(dist_obj, max_distance = 2)
result <- match_couples(constrained)

Index

x datasets lap_solve_batch, 17, 23,29
example_costs, 15 lap_solve_kbest, 30
example_df, 16 lap_solve_kbest(), 5
hospital_staff, 21 lap_solve_line_metric, 32

as_assignment_matrix, 7 match_couples, 23, 35

assignment, 3 match_couples(), 18, 34

assignment(), 6, 12, 50, 51 matchmaker, 33

assignment_duals, 5

assignment_duals(), 5 pixel_morph, 37

augment, 7 pixel_morph_animate, 38, 39, 39

augment.matching_result, 8 plot.balance_diagnostics, 42

plot.matching_result, 42

balance_diagnostics, 9 preprocess_matching_vars, 43

balance_table, 10 print.balance_diagnostics, 44

bottleneck_assignment, 11 print.distance_object, 44

bottleneck_assignment(), 5 print.lap_solve_batch_result, 45

print.lap_solve_kbest_result, 45

compute_distances, 12 print.lap_solve_result, 46

print.matching_result, 46
diagnose_distance_matrix, 14 print.matchmaker_result, 47

print.preprocessing_result, 47
example_costs, 15, 17 print.variable_health, 48

example_df, 16, 16
sinkhorn, 48

get_method_used, 17 sinkhorn(), 5, 50, 51
get_total_cost, 18 sinkhorn_to_assignment, 50
greedy_couples, 18 sinkhorn_to_assignment(), 49, 50
greedy_couples(), 34, 36 summary.balance_diagnostics, 51

summary.distance_object, 52
summary.lap_solve_kbest_result, 52
summary.matching_result, 53

hospital_staff, 21

is_distance_object, 23

is_lap_solve_batch_result, 24 update_constraints, 53
is_lap_solve_kbest_result, 24

is_lap_solve_result, 25

join_matched, 25

lap_solve, 16, 17,23,27
lap_solve(), 5, 12

55

	assignment
	assignment_duals
	as_assignment_matrix
	augment
	augment.matching_result
	balance_diagnostics
	balance_table
	bottleneck_assignment
	compute_distances
	diagnose_distance_matrix
	example_costs
	example_df
	get_method_used
	get_total_cost
	greedy_couples
	hospital_staff
	is_distance_object
	is_lap_solve_batch_result
	is_lap_solve_kbest_result
	is_lap_solve_result
	join_matched
	lap_solve
	lap_solve_batch
	lap_solve_kbest
	lap_solve_line_metric
	matchmaker
	match_couples
	pixel_morph
	pixel_morph_animate
	plot.balance_diagnostics
	plot.matching_result
	preprocess_matching_vars
	print.balance_diagnostics
	print.distance_object
	print.lap_solve_batch_result
	print.lap_solve_kbest_result
	print.lap_solve_result
	print.matching_result
	print.matchmaker_result
	print.preprocessing_result
	print.variable_health
	sinkhorn
	sinkhorn_to_assignment
	summary.balance_diagnostics
	summary.distance_object
	summary.lap_solve_kbest_result
	summary.matching_result
	update_constraints
	Index

