The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Generalized Inverse Gaussian Archimedean Copulas

Marius Hofert

2024-08-12

source(system.file("Rsource", "GIG.R", package="copula"))## ../inst/Rsource/GIG.R
require(copula)
require(bbmle)
require(lattice)
require(grid)
source(system.file("Rsource", "utils.R", package="copula", mustWork=TRUE))##-> showProc.time() ..
doPDF <- FALSE ## set 'do.profile' below -- *visibly*

1 Auxiliary functions

##' Initial interval for GIG
##' @title Initial interval for GIG
##' @param U (n x d)-matrix of simulated data
##' @param h non-negative auxiliary parameter for computing initial intervals
##' @param method "etau" via sample version of Kendall's tau
##'               "dmle.G" via DMLE of Gumbel
##' @return (2 x 2)-matrix containing the initial interval [1st row: lower,
##'         2nd row: upper; 2 parameters => 2 cols]
##' @author Marius Hofert
ii.GIG <- function(U, h, method=c("etau","dmle.G")){
    stopifnot(h >= 0, length(h) >= 2)
    I <- matrix(, nrow=2, ncol=2, dimnames=list(c("lower", "upper"), c("nu", "theta")))
    ## estimate Kendall's tau
    method <- match.arg(method)
    tau.hat <- switch(method,
                      "etau" = { # uses sample version of tau, more accurate but slower
                          tau.hat.mat <- cor(U, method="kendall")
                          mean(tau.hat.mat[upper.tri(tau.hat.mat)])
                      },
                      "dmle.G" = { # uses DMLE for Gumbel to estimate tau
                          Z <- apply(U, 1, max)
                          theta.hat.G <- log(ncol(U))/(log(length(Z))-log(sum(-log(Z))))
                          copGumbel@tau(theta.hat.G)
                      },
                      stop("wrong method:", method))
    ## compute largest value of theta (for upper left endpoint of the inital interval)
    stopifnot(tau.hat > 0)
    nu.min <- 0
    I[1,1] <- nu.min # smallest value for nu
    th.max <- iTau.GIG(max(tau.hat-h[1],0.005), theta=c(nu.min, NA))
    I[2,2] <- th.max[2] # largest value for theta
    ## compute smallest theta (for lower left endpoint of the inital interval)
    th.min <- iTau.GIG(min(tau.hat+h[2],0.995), theta=c(nu.min, NA)) # largest attainable tau with 1e-30 is one.m.eps=0.9602
    I[1,2] <- th.min[2]
    ## compute largest nu (for lower right endpoint of the inital interval)
    nu.max <- iTau.GIG(max(tau.hat-h[1],0.005), theta=c(NA, th.min[2]))
    I[2,1] <- nu.max[1]
    ## result
    I
}
##' -log-likelihood
##' @title -log-likelihood
##' @param nu parameter of the generator/copula
##' @param theta parameter of the generator/copula
##' @param u (n x d)-matrix of simulated data
##' @return -sum(log(density))
##' @author Marius Hofert
nlogl.GIG <- function(nu, theta, u){
    if(!is.matrix(u)) u <- rbind(u)
    if((d <- ncol(u)) < 2) stop("u should be at least bivariate") # check that d >= 2
    -sum(dacopula.GIG(u, theta=c(nu, theta), n.MC=0, log=TRUE))
}
nlogl.GIG. <- function(theta, u) nlogl.GIG(theta[1], theta=theta[2], u=u) # vectorized version

2 Setup

Note: The GIG family is two-parametric.

Plot Kendall’s tau as a function in \(\theta\) for different \(\nu\)

th1 <- c(0, 0.1, 0.5, 1, 5, 10)
cols <- colorRampPalette(c("red", "orange", "darkgreen", "turquoise", "blue"),
                         space="Lab")(length(th1))
par(pty="s")
for(i in seq_along(th1))
    curve(tau.GIG(cbind(th1[i],x)), 1e-12, 2,
          main="Kendall's tau for the GIG family", ylim=c(0,1),
          xlab=expression(theta), ylab=expression(tau(nu,theta)), add=(i>1),
          lwd=1.4, col=cols[i])
label <- as.expression(lapply(1:length(th1), function(i) substitute(nu==nu., list(nu.=th1[i]))))
legend("topright", label, bty="n", lwd=1.4, col=cols)

Parameter specification

Let’s specify some parameters.

n <- 100 # sample size
d <- 10 # dimension
nu <- 0.2 # fix nu
tau <- 0.5 # => psi(t)=(1+t)^(-nu/2)besselK(theta*sqrt(1+t), nu=nu)/besselK(theta, nu=nu) with (nu, theta)=(0.2, 0.0838)
h <- c(0.15, 0.15) # h_-, h_+ (for initial value)

3 Sampling and estimation

Sampling

theta <- iTau.GIG(tau, c(nu, NA)) # determine theta such that tau is matched (for given nu)
set.seed(1000)
U <- rnacopula.GIG(n, d, theta)
par(pty="s")
splom2(U, cex=0.4, pscales=0, main=paste("Sample of size",n,
                              "from a GIG copula"))

Estimation

I <- ii.GIG(U, h)
start <- colMeans(I) # initial interval

## 1) Without profiling: optim with method="L-BFGS-B"
if(FALSE) # << don't do it if won't look at it  -- takes ca.  16.5 sec
system.time(optim(par=start, method="L-BFGS-B",
                  fn=function(x) nlogl.GIG(x[1], theta=x[2], u=U),
                  lower=c(I[1,1], I[1,2]), upper=c(I[2,1], I[2,2])))

## 2) With profiling: via mle (uses optimizer="optim" with method="L-BFGS-B")
nLL <- function(nu, theta) nlogl.GIG(nu, theta, u=U)
system.time(ml <- mle(nLL, method="L-BFGS-B",
                      start=list(nu=mean(I[,1]), theta=mean(I[,2])),
                      lower=c(nu=I[1,1], theta=I[1,2]),
                      upper=c(nu=I[2,1], theta=I[2,2])))
##    user  system elapsed 
##  12.519   0.075  12.672
summary(ml)
## Maximum likelihood estimation
## 
## Call:
## mle(minuslogl = nLL, start = list(nu = mean(I[, 1]), theta = mean(I[, 
##     2])), method = "L-BFGS-B", lower = c(nu = I[1, 1], theta = I[1, 
##     2]), upper = c(nu = I[2, 1], theta = I[2, 2]))
## 
## Coefficients:
##         Estimate Std. Error
## nu    0.19074320 0.06197105
## theta 0.09566594 0.01386170
## 
## -2 log L: -994.5633
str(ml@details)
## List of 6
##  $ par        : Named num [1:2] 0.1907 0.0957
##   ..- attr(*, "names")= chr [1:2] "nu" "theta"
##  $ value      : num -497
##  $ counts     : Named int [1:2] 30 30
##   ..- attr(*, "names")= chr [1:2] "function" "gradient"
##  $ convergence: int 0
##  $ message    : chr "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##  $ hessian    : num [1:2, 1:2] 264 139 139 5277
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "nu" "theta"
##   .. ..$ : chr [1:2] "nu" "theta"
## 3) With profiling: via mle2 (uses optimizer="optim" with method="L-BFGS-B")
system.time(ml2 <- mle2(nlogl.GIG, data=list(u=U), method="L-BFGS-B",
                        start=list(nu=mean(I[,1]), theta=mean(I[,2])),
                        lower=c(nu=I[1,1], theta=I[1,2]),
                        upper=c(nu=I[2,1], theta=I[2,2])))
##    user  system elapsed 
##  14.403   0.007  14.467
summary(ml2)
## Maximum likelihood estimation
## 
## Call:
## mle2(minuslogl = nlogl.GIG, start = list(nu = mean(I[, 1]), theta = mean(I[, 
##     2])), method = "L-BFGS-B", data = list(u = U), lower = c(nu = I[1, 
##     1], theta = I[1, 2]), upper = c(nu = I[2, 1], theta = I[2, 
##     2]))
## 
## Coefficients:
##       Estimate Std. Error z value     Pr(z)    
## nu    0.190743   0.060871  3.1336  0.001727 ** 
## theta 0.095666   0.013684  6.9910 2.729e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## -2 log L: -994.5633
str(ml2@details)
## List of 8
##  $ par        : Named num [1:2] 0.1907 0.0957
##   ..- attr(*, "names")= chr [1:2] "nu" "theta"
##  $ value      : num -497
##  $ counts     : Named int [1:2] 30 30
##   ..- attr(*, "names")= chr [1:2] "function" "gradient"
##  $ convergence: int 0
##  $ message    : chr "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
##  $ hessian    : num [1:2, 1:2] 272 112 112 5387
##  $ maxgrad    : num 9.36
##  $ eratio     : num 0.0501

4 Plots

Profile likelihood plots

do.profile <- FALSE # set this to TRUE to compute profile-likelihood plots (time-consuming)
if(do.profile){
    system.time(prof <- profile(ml))
    if(FALSE) { ## FIXME (?)
        ## maybe this helps: https://stat.ethz.ch/pipermail/r-help/2005-July/076003.html
        ci <- confint(prof)
        ci
        plot(prof)
    }
    system.time(prof2 <- profile(ml2)) # profiling (time-consuming)
    (ci <- confint(prof2))
    plot(prof2) # => for adjusting stepsize etc., see ?profile.mle2
}
showProc.time()
## Time (user system elapsed): 28.518 0.134 28.795

-log-likelihood plot

## Build grid
m <- 20 # number of grid points = number of intervals + 1
th   <- seq(I[1,1], I[2,1], length.out=m) # grid points for nu
beta <- seq(I[1,2], I[2,2], length.out=m) # grid points for theta
grid <- expand.grid(theta=th, beta=beta) # grid
base.saveF <- "GIG_vign-nlogl-gr.rds"
saveF <- system.file("rData", base.saveF, package = "copula")
if(nzchar(saveF) && file.exists(saveF)) { # save time, also on CRAN
    val.grid <- readRDS(saveF)
} else { ## takes around 45 sec
    print(system.time(
        ## val.grid := values of the -log-likelihood on the grid
        val.grid <- apply(grid, 1, nlogl.GIG., u=U)
    ))
    saveF <- file.path(if(dir.exists(sd <- "~/R/Pkgs/copula/inst/rData")) sd
                       else tempdir(), base.saveF)
    saveRDS(val.grid, file = saveF)
    cat("saved to saveFile = ", dQuote(saveF), "\n")
}
showProc.time()
## Time (user system elapsed): 0.025 0.007 0.036

Wireframe

true.theta <- theta
true.val <- c(true.theta, nlogl.GIG.(true.theta, u=U)) # theoretical optimum
opt <- ml@coef # optimizer-optimum
opt.val <- c(opt, nlogl.GIG.(opt, u=U)) # optimizer-optimum and its value
pts <- rbind(true.val, opt.val) # points to add to wireframe plot
title <- "-log-likelihood of an Archimedean GIG copula" # title
sub <- substitute(italic(n) == N ~~~  italic(d)== D ~~~
                  tau == TAU ~~~ "#{eval}:" ~ NIT,
                  list(N=n, D=d, TAU= tau, NIT= ml@details$counts[[1]]))
sub <- as.expression(sub) # lattice bug
wireframe(val.grid ~ grid[,1] * grid[,2], screen=list(z=70, x=-55), zoom=0.95,
          xlab = expression(italic(theta)), ylab = expression(italic(beta)),
          zlab = list(as.expression(-log~L * group("(",list(theta,beta),")")), rot=90),
          main=title, sub=sub, pts=pts, scales=list(col=1, arrows=FALSE),
          par.settings=list(axis.line=list(col="transparent"),
          clip=list(panel="off")), zlim=c(min(val.grid, pts[,3]),
                                   max(val.grid, pts[,3])), aspect=1,
          panel.3d.wireframe = function(x,y,z,xlim,ylim,zlim,xlim.scaled,
                                        ylim.scaled,zlim.scaled,pts,...) {
              panel.3dwire(x=x, y=y, z=z, xlim=xlim, ylim=ylim, zlim=zlim,
                           xlim.scaled=xlim.scaled, ylim.scaled=ylim.scaled,
                           zlim.scaled=zlim.scaled, alpha.regions=0.8, ...)
              panel.3dscatter(x=pts[,1], y=pts[,2], z=pts[,3],
                              xlim=xlim, ylim=ylim, zlim=zlim,
                              xlim.scaled=xlim.scaled, ylim.scaled=ylim.scaled,
                              zlim.scaled=zlim.scaled, type="p", col=c("red","blue"),
                              pch=c(3,4), lex=2, cex=1.4, .scale=TRUE, ...)
          },
          key = list(x=0.64, y=1.01,
                     points = list(pch=c(3,4), col=c("red","blue"), lwd=2, cex=1.4),
                     text = list(c("True value", "Optimum of optimizer")), padding.text=3,
                     cex=1, align=TRUE, transparent=TRUE))

Levelplot

xlim. <- c(min(grid[,1]),max(grid[,1]))
ylim. <- c(min(grid[,2]),max(grid[,2]))
xeps <- (xlim.[2] - xlim.[1]) * 0.04
yeps <- (ylim.[2] - ylim.[1]) * 0.04
cols <- adjustcolor(colorRampPalette(c("darkgreen", "green", "orange", "yellow"),
                                     space="Lab")(100), 0.8)
levelplot(val.grid ~ grid[,1] * grid[,2],
          par.settings = list(layout.heights=list(main=3, sub=2),
                              regions=list(col=cols)),
          xlim = c(xlim.[1]-xeps, xlim.[2]+xeps),
          ylim = c(ylim.[1]-yeps, ylim.[2]+yeps),
          xlab = expression(italic(theta)), ylab=expression(italic(beta)),
          main=title, sub=sub, pts=pts, aspect=1,
          scales=list(alternating=c(1,1), tck=c(1,0)), contour=TRUE,
          panel = function(x, y, z, pts, ...) {
              panel.levelplot(x=x, y=y, z=z, ...)
              grid.points(x=pts[1,1], y=pts[1,2], pch=3,
                          gp=gpar(lwd=2, col="red")) # + true value
              grid.points(x=pts[2,1], y=pts[2,2], pch=4,
                          gp=gpar(lwd=2, col="blue")) # x optimum
          },
          key = list(x=0.18, y=1.08, points = list(pch=c(3,4), col=c("red","blue"),
                                                   lwd=2, cex=1.4),
                     columns=2, text = list(c("True value", "Optimum of optimizer")),
                     align=TRUE, transparent=TRUE))

showProc.time()
## Time (user system elapsed): 0.74 0.02 0.743

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.