The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The conversim
package provides tools for analyzing
similarity between conversations, with a focus on calculating topic,
lexical, semantic, stylistic, and sentiment similarities. This package
can handle comparisons between two long speeches, a sequence of
conversations in one or multiple dyads. Some utility functions are also
provided that allow researchers to explore and visualize conversational
patterns.
You can install conversim
on CRAN:
install.packages("conversim")
library(conversim)
load(system.file("extdata", "dyad_example_data.Rdata", package = "conversim"))
load(system.file("extdata", "speeches_data.RData", package = "conversim"))
Below are examples of how to use the main functions in the
conversim
package.
# preprocess_text function
<- preprocess_text(speeches_data$text[1])
preprocessed_A <- preprocess_text(speeches_data$text[2])
preprocessed_B
# topic_similarity function
<- topic_similarity(speeches_data$text[1], speeches_data$text[2], method = "lda", num_topics = 5)
lda_similarity <- topic_similarity(speeches_data$text[1], speeches_data$text[2], method = "lsa", num_topics = 5)
lsa_similarity
# lexical_similarity function
<- lexical_similarity(preprocessed_A, preprocessed_B)
lex_similarity
# semantic_similarity function
<- semantic_similarity(speeches_data$text[1], speeches_data$text[2], method = "tfidf")
tfidf_similarity <- semantic_similarity(speeches_data$text[1], speeches_data$text[2], method = "word2vec")
word2vec_similarity
# structural_similarity function
<- structural_similarity(strsplit(speeches_data$text[1], "\n")[[1]], strsplit(speeches_data$text[2], "\n")[[1]])
struct_similarity
# stylistic_similarity function
<- stylistic_similarity(speeches_data$text[1], speeches_data$text[2])
style_similarity
# sentiment_similarity function
<- sentiment_similarity(speeches_data$text[1], speeches_data$text[2]) sent_similarity
# Preprocess the conversations from multiple dyads
<- preprocess_dyads(dyad_example_data)
preprocessed_data
# Select one dyad for comparison
<- preprocessed_data %>% filter(dyad_id == 1) %>% select(speaker_id, processed_text)
conversation
# Calculate topic similarity sequence
<- topic_sim_seq(conversation, method = "lda", num_topics = 2, window_size = 3)
topic_sim
## Lexical Similarity Sequence
<- lex_sim_seq(conversation, window_size = 3)
lexical_sim
## Semantic Similarity Sequence
<- sem_sim_seq(conversation, method = "tfidf", window_size = 3)
semantic_sim
## Stylistic Similarity Sequence
<- style_sim_seq(conversation, window_size = 3)
stylistic_sim
## Sentiment Similarity Sequence
<- sent_sim_seq(conversation, window_size = 3) sentiment_sim
# Preprocess the conversations from multiple dyads
<- preprocess_dyads(dyad_example_data)
preprocessed_data
# Calculate topic similarity for multiple dyads
<- topic_sim_dyads(preprocessed_data, method = "lda", num_topics = 3, window_size = 2)
topic_sim_results
# Calculate lexical similarity for multiple dyads
<- lexical_sim_dyads(preprocessed_data, window_size = 2)
lexical_sim_results
# Calculate semantic similarity for multiple dyads
<- semantic_sim_dyads(preprocessed_data, method = "tfidf", window_size = 2)
semantic_sim_results
# Calculate structural similarity for multiple dyads
<- structural_sim_dyads(preprocessed_data)
structural_sim_results
# Calculate stylistic similarity for multiple dyads
<- stylistic_sim_dyads(preprocessed_data)
stylistic_sim_results
# Calculate sentiment similarity for multiple dyads
<- sentiment_sim_dyads(preprocessed_data)
sentiment_sim_results
# Calculate participant similarity for multiple dyads
<- participant_sim_dyads(preprocessed_data)
participant_sim_results
# Calculate timing similarity for multiple dyads
<- timing_sim_dyads(preprocessed_data) timing_sim_results
For more tutorials, please visit liu-chao.site/conversim
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.