The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of contactdata is to provide access to social contact data for 177 countries. This data comes from
Kiesha Prem, Alex R. Cook, Mark Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comp. Biol. (2017), https://doi.org/10.1371/journal.pcbi.1005697.
and
Kiesha Prem, Kevin van Zandvoort, Petra Klepac, Rosalind M. Eggo, Nicholas G. Davies, CMMID COVID-19 Working Group, Alex R. Cook, Mark Jit, Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era, PLoS Comp. Biol. (2021), https://doi.org/10.1371/journal.pcbi.1009098.
(please cite them in your publications, alongside this package).
Note that this package does not make any geopolitical statement and only provides the data as it has been published.<
contactdata offers an easier access to this data, makes it readily
compatible with tidyverse
packages, such as ggplot2,
via the contact_countries()
function, and provides an easy
way to harmonise country nomenclature by using the countrycode
package as authoritative name source.
You can install this package from CRAN:
install.packages("contactdata")
or the development version from GitHub, via my r-universe:
install.packages("contactdata", repos = "https://bisaloo.r-universe.dev")
The most basic function allows you to get matrix data for a specific country:
library(contactdata)
contact_matrix("France")
#> 00_05 05_10 10_15 15_20 20_25 25_30 30_35 35_40 40_45
#> 00_05 2.78349 1.09714 0.59766 0.42514 0.54475 0.83666 1.12491 1.01569 0.63464
#> 05_10 1.33122 6.29510 1.27272 0.46477 0.35261 0.68506 1.02618 1.13031 0.99165
#> 10_15 0.39897 2.22464 9.84713 1.05305 0.45699 0.50444 0.66377 1.01329 1.16385
#> 15_20 0.30098 0.51971 3.20301 9.61013 1.15339 0.63465 0.54228 0.81646 0.95410
#> 20_25 0.37971 0.37347 0.44479 2.04600 3.20611 1.27444 0.82373 0.68958 0.68682
#> 25_30 0.72782 0.46144 0.35097 0.79856 1.67674 2.60892 1.49240 1.13783 0.96147
#> 30_35 0.79200 0.88463 0.67619 0.47619 0.92299 1.40768 2.20929 1.48891 1.13288
#> 35_40 0.74890 1.07171 0.88910 0.75047 0.72376 1.16507 1.45639 2.36740 1.65545
#> 40_45 0.51058 0.76735 1.06267 0.90561 0.87963 1.04440 1.34928 1.54511 2.22415
#> 45_50 0.33981 0.42638 0.67853 1.08318 0.90254 0.92989 1.09819 1.26458 1.37553
#> 50_55 0.31072 0.36274 0.59937 0.83731 1.00352 1.19355 1.06834 1.05459 1.36231
#> 55_60 0.39864 0.42351 0.50890 0.54609 0.71051 1.02643 1.13779 0.92754 1.01287
#> 60_65 0.38587 0.36993 0.34816 0.37182 0.48445 0.66960 0.78982 0.84058 0.74527
#> 65_70 0.29379 0.37405 0.33048 0.29065 0.37366 0.48083 0.65580 0.67714 0.68240
#> 70_75 0.20554 0.34026 0.38589 0.45420 0.31254 0.41868 0.44131 0.65480 0.77630
#> 75_80 0.26897 0.27668 0.35823 0.32506 0.26700 0.28903 0.42676 0.45384 0.51002
#> 45_50 50_55 55_60 60_65 65_70 70_75 75_80
#> 00_05 0.50544 0.52665 0.49783 0.39153 0.33717 0.26006 0.17979
#> 05_10 0.60923 0.49424 0.44941 0.41570 0.33297 0.24289 0.17912
#> 10_15 0.83145 0.55457 0.38642 0.30138 0.29915 0.26661 0.19652
#> 15_20 1.05109 0.63727 0.39461 0.28397 0.24315 0.19886 0.15800
#> 20_25 0.97167 0.70034 0.48631 0.29828 0.22838 0.24443 0.18815
#> 25_30 0.91936 0.95941 0.62849 0.43022 0.29327 0.22153 0.16448
#> 30_35 0.95357 0.83514 0.72204 0.51731 0.34141 0.23656 0.19808
#> 35_40 1.17352 0.91423 0.64593 0.56372 0.43426 0.33740 0.20415
#> 40_45 1.46235 1.06357 0.54927 0.52157 0.41118 0.33389 0.24101
#> 45_50 1.93332 1.16615 0.68328 0.45318 0.34997 0.32903 0.25424
#> 50_55 1.58509 1.70873 1.04120 0.59368 0.35534 0.33119 0.26512
#> 55_60 0.93730 1.19991 1.48381 0.82802 0.48857 0.32124 0.23713
#> 60_65 0.67297 0.67140 0.88300 1.21412 0.69313 0.50550 0.25726
#> 65_70 0.52748 0.55506 0.65119 0.74149 1.13052 0.52794 0.27354
#> 70_75 0.69078 0.54272 0.51067 0.89222 0.93588 1.25788 0.39716
#> 75_80 0.66095 0.66008 0.47413 0.41622 0.59534 0.62970 0.44627
You can also get several countries at once with the
contact_df_countries()
function, as detailed in the vignette.
Because it is very likely that users of this package will also need
data about the population in each age group, it is also bundled in this
package for convenience. Please see ?age_df_countries
for
more information.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.