The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
conformalbayes provides functions to construct finite-sample calibrated predictive intervals for Bayesian models, following the approach in Barber et al. (2021). These intervals are calculated efficiently using importance sampling for the leave-one-out residuals. By default, the intervals will also reflect the relative uncertainty in the Bayesian model, using the locally-weighted conformal methods of Lei et al. (2018).
You can install the development version of conformalbayes with:
# install.packages("devtools")
::install_github("CoryMcCartan/conformalbayes") devtools
library(rstanarm)
library(conformalbayes)
data("Loblolly")
= sample(nrow(Loblolly), 50)
fit_idx = Loblolly[fit_idx, ]
d_fit = Loblolly[-fit_idx, ]
d_test
# fit a simple linear regression
= stan_glm(height ~ sqrt(age), data=d_fit,
m chains=1, control=list(adapt_delta=0.999), refresh=0)
# prepare conformal predictions
= loo_conformal(m)
m
# make predictive intervals
= predictive_interval(m, newdata=d_test, prob=0.9)
pred_ci print(head(pred_ci))
#> 5% 95%
#> 1 -0.15888597 5.600095
#> 29 25.43314599 30.988491
#> 57 48.67648127 54.182655
#> 2 -0.09561987 5.447242
#> 30 25.42970114 30.938488
#> 72 58.01173186 63.596592
# are we covering?
mean(pred_ci[, "5%"] <= d_test$height &
$height <= pred_ci[, "95%"])
d_test#> [1] 0.9117647
Read more on the Getting Started page.
Barber, R. F., Candes, E. J., Ramdas, A., & Tibshirani, R. J. (2021). Predictive inference with the jackknife+. The Annals of Statistics, 49(1), 486-507.
Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018). Distribution-free predictive inference for regression. Journal of the American Statistical Association, 113(523), 1094-1111.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.