The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

codez: Seq2Seq Encoder-Decoder Model for Time-Feature Analysis Based on Tensorflow

Proposes Seq2seq Time-Feature Analysis using an Encoder-Decoder to project into latent space and a Forward Network to predict the next sequence.

Version: 1.0.0
Depends: R (≥ 3.6)
Imports: purrr (≥ 0.3.4), abind (≥ 1.4-5), ggplot2 (≥ 3.3.6), readr (≥ 2.1.2), fANCOVA (≥ 0.6-1), imputeTS (≥ 3.2), modeest (≥ 2.4.0), scales (≥ 1.1.1), tictoc (≥ 1.0.1), tensorflow (≥ 2.9.0), keras (≥ 2.9.0), moments (≥ 0.14), narray (≥ 0.4.1.1), fastDummies (≥ 1.6.3), entropy (≥ 1.3.1), philentropy (≥ 0.5.0), greybox (≥ 1.0.1), lubridate (≥ 1.7.10)
Suggests: testthat (≥ 3.0.0), reticulate (≥ 1.26)
Published: 2022-09-23
DOI: 10.32614/CRAN.package.codez
Author: Giancarlo Vercellino [aut, cre, cph]
Maintainer: Giancarlo Vercellino <giancarlo.vercellino at gmail.com>
License: GPL-3
URL: https://rpubs.com/giancarlo_vercellino/codez
NeedsCompilation: no
Materials: NEWS
CRAN checks: codez results

Documentation:

Reference manual: codez.pdf

Downloads:

Package source: codez_1.0.0.tar.gz
Windows binaries: r-devel: codez_1.0.0.zip, r-release: codez_1.0.0.zip, r-oldrel: codez_1.0.0.zip
macOS binaries: r-release (arm64): codez_1.0.0.tgz, r-oldrel (arm64): codez_1.0.0.tgz, r-release (x86_64): codez_1.0.0.tgz, r-oldrel (x86_64): codez_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=codez to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.