The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

coconots: Convolution-Closed Models for Count Time Series

Useful tools for fitting, validating, and forecasting of practical convolution-closed time series models for low counts are provided. Marginal distributions of the data can be modeled via Poisson and Generalized Poisson innovations. Regression effects can be modelled via time varying innovation rates. The models are described in Jung and Tremayne (2011) <doi:10.1111/j.1467-9892.2010.00697.x> and the model assessment tools are presented in Czado et al. (2009) <doi:10.1111/j.1541-0420.2009.01191.x>, Gneiting and Raftery (2007) <doi:10.1198/016214506000001437> and, Tsay (1992) <doi:10.2307/2347612>.

Version: 1.1.3
Depends: R (≥ 3.5.0)
Imports: Rcpp, forecast, numDeriv, HMMpa, stats, ggplot2, utils, matrixStats, JuliaConnectoR
LinkingTo: Rcpp, StanHeaders (≥ 2.21.0), RcppParallel (≥ 5.0.1)
Suggests: covr, testthat (≥ 3.0.0)
Published: 2023-10-01
DOI: 10.32614/CRAN.package.coconots
Author: Manuel Huth [aut, cre], Robert C. Jung [aut], Andy Tremayne [aut]
Maintainer: Manuel Huth <manuel.huth at yahoo.com>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README
In views: TimeSeries
CRAN checks: coconots results

Documentation:

Reference manual: coconots.pdf

Downloads:

Package source: coconots_1.1.3.tar.gz
Windows binaries: r-devel: coconots_1.1.3.zip, r-release: coconots_1.1.3.zip, r-oldrel: coconots_1.1.3.zip
macOS binaries: r-release (arm64): coconots_1.1.3.tgz, r-oldrel (arm64): coconots_1.1.3.tgz, r-release (x86_64): coconots_1.1.3.tgz, r-oldrel (x86_64): coconots_1.1.3.tgz
Old sources: coconots archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=coconots to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.