The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Examples in 3D: part II


This vignette contains part II of a set of examples on how to use clugenr in 3D. Examples require the following setup code:

library(clugenr)    # The clugenr library
options(rgl.useNULL = TRUE)  # Create RGL plots in systems without displays (CI)
library(rgl)
setupKnitr(autoprint = TRUE) # Render RGL plots directly on generated page

# Load helper functions for plotting examples
source("plot_examples_3d.R", local = knitr::knit_global())

# Keep examples reproducible in newer R versions
RNGversion("3.6.0")

The 3D examples were plotted with the plot_examples_3d() function available here.

Lateral dispersion and placement of point projections on the line

seed <- 456

Normal projection placement (default): proj_dist_fn = "norm"

e064 <- clugen(3, 4, 300, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 0.0, seed = seed)
e065 <- clugen(3, 4, 300, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 1.0, seed = seed)
e066 <- clugen(3, 4, 300, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 3.0, seed = seed)
plot_examples_3d(list(e = e064, t = "e064: lateral_disp = 0"),
                 list(e = e065, t = "e065: lateral_disp = 1"),
                 list(e = e066, t = "e066: lateral_disp = 3"))

Uniform projection placement: proj_dist_fn = "unif"

e067 <- clugen(3, 4, 300, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 0.0, seed = seed,
               proj_dist_fn = "unif")
e068 <- clugen(3, 4, 300, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 1.0, seed = seed,
               proj_dist_fn = "unif")
e069 <- clugen(3, 4, 300, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 3.0, seed = seed,
               proj_dist_fn = "unif")
plot_examples_3d(list(e = e067, t = "e067: lateral_disp = 0"),
                 list(e = e068, t = "e068: lateral_disp = 1"),
                 list(e = e069, t = "e069: lateral_disp = 3"))

Custom projection placement using the Beta distribution

# Custom proj_dist_fn: point projections placed using the Beta distribution
proj_beta <- function(len, n) len * rbeta(n, 0.1, 0.1) - len / 2
e070 <- clugen(3, 4, 400, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 0.0, seed = seed,
               proj_dist_fn = proj_beta)
e071 <- clugen(3, 4, 400, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 1.0, seed = seed,
               proj_dist_fn = proj_beta)
e072 <- clugen(3, 4, 400, c(1, 0, 0), pi / 2, c(20, 20, 20), 13, 2, 3.0, seed = seed,
               proj_dist_fn = proj_beta)
plot_examples_3d(list(e = e070, t = "e070: lateral_disp = 0"),
                 list(e = e071, t = "e071: lateral_disp = 1"),
                 list(e = e072, t = "e072: lateral_disp = 3"))

Controlling final point positions from their projections on the cluster-supporting line

seed <- 12321
# Custom proj_dist_fn: point projections placed using the Beta distribution
proj_beta <- function(len, n) len * rbeta(n, 0.1, 0.1) - len / 2

Points on hyperplane orthogonal to cluster-supporting line (default): point_dist_fn = "n-1"

e073 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed)
e074 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               proj_dist_fn = "unif")
e075 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               proj_dist_fn = proj_beta)
plot_examples_3d(list(e = e073, t = "e073: proj_dist_fn = 'norm' (default)"),
                 list(e = e074, t = "e074: proj_dist_fn = 'unif'"),
                 list(e = e075, t = "e075: custom proj_dist_fn (Beta dist.)"))

Points around projection on cluster-supporting line: point_dist_fn = "n"

e076 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               point_dist_fn = "n")
e077 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               point_dist_fn = "n", proj_dist_fn = "unif")
e078 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               point_dist_fn = "n", proj_dist_fn = proj_beta)
plot_examples_3d(list(e = e076, t = "e076: proj_dist_fn = 'norm' (default)"),
                 list(e = e077, t = "e077: proj_dist_fn = 'unif'"),
                 list(e = e078, t = "e078: custom proj_dist_fn (Beta dist.)"))

Custom point placement using the exponential distribution

# Custom point_dist_fn: final points placed using the Exponential distribution
clupoints_n_1_exp <- function(projs, lat_std, len, clu_dir, clu_ctr) {
  dist_exp <- function(npts, lstd) lstd * rexp(npts, rate = 2 / lstd)
  clupoints_n_1_template(projs, lat_std, clu_dir, dist_exp)
}
e079 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               point_dist_fn = clupoints_n_1_exp)
e080 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               point_dist_fn = clupoints_n_1_exp, proj_dist_fn = "unif")
e081 <- clugen(3, 5, 400, c(1, 0, 0), pi / 3, c(20, 20, 20), 22, 3, 2, seed = seed,
               point_dist_fn = clupoints_n_1_exp, proj_dist_fn = proj_beta)
plot_examples_3d(list(e = e079, t = "e079: proj_dist_fn = 'norm' (default)"),
                 list(e = e080, t = "e080: proj_dist_fn = 'unif'"),
                 list(e = e081, t = "e081: custom proj_dist_fn (Beta dist.)"))

Manipulating cluster sizes

seed <- 87
# Custom clucenters_fn (all): yields fixed positions for the clusters
centers_fixed <- function(nclu, csep, coff) {
  matrix(c(-csep[1], -csep[2], -csep[3], csep[1], -csep[2], -csep[3],
           -csep[1], csep[2], csep[3], csep[1], csep[2], csep[3]),
         nrow = nclu, byrow = TRUE)
}

# Custom clusizes_fn (e083): cluster sizes determined via the uniform distribution,
# no correction for total points
clusizes_unif <- function(nclu, npts, ae) sample(2 * npts / nclu, nclu, replace = TRUE)

# Custom clusizes_fn (e084): clusters all have the same size, no correction for
# total points
clusizes_equal <- function(nclu, npts, ae) npts %/% nclu * rep.int(1, nclu)
e082 <- clugen(3, 4, 400, c(1, 1, 1), pi, c(20, 20, 20), 0, 0, 5, seed = seed,
               point_dist_fn = "n",
               clucenters_fn = centers_fixed)
e083 <- clugen(3, 4, 400, c(1, 1, 1), pi, c(20, 20, 20), 0, 0, 5, seed = seed,
               clusizes_fn = clusizes_unif, point_dist_fn = "n",
               clucenters_fn = centers_fixed)
e084 <- clugen(3, 4, 400, c(1, 1, 1), pi, c(20, 20, 20), 0, 0, 5, seed = seed,
               clusizes_fn = clusizes_equal, point_dist_fn = "n",
               clucenters_fn = centers_fixed)
plot_examples_3d(list(e = e082, t = "e082: normal dist. (default)"),
                 list(e = e083, t = "e083: unif. dist. (custom)"),
                 list(e = e084, t = "e084: equal size (custom)"))

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.